Promise

Constraint

 Satisfaction
Problems

Standa Živný (Oxford)
Liblice, 27 th September 2023

January 2009

January 2009

January 2009

January 2009

DIMACS-RUTCOR Workshop on Boolean and Pseudo-Boolean Functions in Memory of Peter L. Hammer
January 19-22, 2009
University Inn and Conference Center
New Brunswick Campus, Rutgers University
Organizers:
Endre Boros, Director of RUTCOR, Endre.Boros at rutcor.rutgers.edu

January 2009

Discrete Applied Mathematics 123 (2002) 155-225
DISCRETE
APPLIED
MATHEMATICS

Pseudo-Boolean optimization ${ }^{2}$

Endre Boros*, Peter L. Hammer
RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway, NJ 08854-8003, USA

January 2009

BOOLEAN FUNCTIONS
 Theory, Algorithms, and Applications

ELSEVIER
Discrete Applied Mathematics 123 (2002) 155-22

Pseudo-Boolean optimiza

Endre Boros*, Peter L. Hamm
RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataw

lanuary 2009

BOOLEAN FUNCTIONS
 Theory, Algorithms, and Applications

Yves Crama and Peter L. Hammer

I. Examples

7-SAT

$\left(x_{1} \vee \bar{x}_{2} \vee x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5} \vee x_{6} \vee x_{7}\right)$

7-SAT

$\left(x_{1} \vee \bar{x}_{2} \vee x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5} \vee x_{6} \vee x_{7}\right)$

7-SAT

$\left(x_{1} \vee \bar{x}_{2} \vee x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5} \vee x_{6} \vee x_{7}\right)$

7-SAT

$\left(x_{1} \vee \bar{x}_{2} \vee x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5} \vee x_{6} \vee x_{7}\right)$

7-SAT

$$
\left(x_{1} \vee \bar{x}_{2} \vee x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5} \vee x_{6} \vee x_{7}\right)
$$

Thm: ($\mathrm{I}, \mathrm{g}, \mathrm{k})$-SAT in P if $\frac{g}{k} \geq \frac{1}{2}$ and NP-hard otherwise. [Austrin-Guruswami-Håstad SICOMP'I7]

7-SAT

$$
\left(x_{1} \vee \bar{x}_{2} \vee x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5} \vee x_{6} \vee x_{7}\right)
$$

Thm: (I,g,k)-SAT in P if $\frac{g}{k} \geq \frac{1}{2}$ and NP-hard otherwise. [Austrin-Guruswami-Håstad SICOMP $\left.{ }^{\prime} 17\right]$ NP-hardness of ($1, g, 2 g+1$)-SAT.

$$
(\mathrm{a}, \mathrm{~g}, \mathrm{k}) \equiv_{p}(\mathrm{a}+\mathrm{l}, \mathrm{~g}+\mathrm{l}, \mathrm{k}+\mathrm{l})
$$

7-SAT

$$
\left(x_{1} \vee \bar{x}_{2} \vee x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5} \vee x_{6} \vee x_{7}\right)
$$

Thm: (I,g,k)-SAT in P if $\frac{g}{k} \geq \frac{1}{2}$ and NP-hard otherwise. [Austrin-Guruswami-Håstad SICOMP'। 7] NP-hardness of ($1, g, 2 g+1$)-SAT.

I-in-3-SAT

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{4} \vee x_{5}\right)$

NAE-3-SAT

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{4} \vee x_{5}\right)$

I-in-3/NAE-3-SAT

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{4} \vee x_{5}\right)$

I-in-3/NAE-3-SAT

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{4} \vee x_{5}\right)$

I-in-3/NAE-3-SAT

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{4} \vee x_{5}\right)$

Thm: I-in-3/NAE-SAT is in P. [Brakensiek-Guruswami SICOMP'2I]

Graph Colouring

Graph Colouring

Graph Colouring

Find a c-colouring of a k-colourable graph.

Graph Colouring

Find a c-colouring of a k-colourable graph.
Conjecture: NP-hard for every constant $c \geq k \geq 3$. [Garey-Johnson JACM'76]

Hypergraph Colouring

Hypergraph Colouring

Find a c-colouring of a k-colourable 3 -uniform hypergraph.

Hypergraph Colouring

Find a c-colouring of a k-colourable 3 -uniform hypergraph.

Thm: NP-hard for every constant $c \geq k \geq 2$. [Dinur-Regev-Smyth Combinatorica'05]

LO Colouring

LO Colouring

LO Colouring

LO Colouring

LO Colouring

LO Colouring

0	0	1
0	1	0
1	0	0

LO Colouring

LO Colouring

LO Colouring

Find a c-LO-colouring of a k-LO-colourable 3 -uniform hypergraph.

LO Colouring

Find a c-LO-colouring of a k-LO-colourable 3-uniform hypergraph.

Conjecture: NP-hard for every constant $c \geq k=2$. [Barto-Battistelli-Berg STACS'2I]
2. CSPs

Constraint Satisfaction Problems

IN: set of variables, set of labels, set of constraints
OUT: assignment that satisfies the given constraints

Constraint Satisfaction Problems

IN: set of variables, set of labels, set of constraints
OUT: assignment that satisfies the given constraints

3-Colour

Constraint Satisfaction Problems

IN: set of variables, set of labels, set of constraints
OUT: assignment that satisfies the given constraints

$$
\begin{gathered}
\text { I-in-3-SAT } \\
\left(x_{1} \vee x_{2} \vee x_{5}\right) \\
\left(x_{2} \vee x_{3} \vee x_{7}\right) \\
\left(x_{1} \vee x_{2} \vee x_{5}\right)
\end{gathered}
$$

3-Colour

Constraint Satisfaction Problems

IN: set of variables, set of labels, set of constraints
OUT: assignment that satisfies the given constraints
I-in-3-SAT
$\left(x_{1} \vee x_{2} \vee x_{5}\right)$
$\left(x_{2} \vee x_{3} \vee x_{7}\right)$
$\left(x_{1} \vee x_{2} \vee x_{5}\right)$

3-Colour

Linear Equations

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}=1 \\
& x_{2}+x_{4}+x_{5}=0 \\
& x_{1}+x_{3}+x_{4}+x_{6}=2
\end{aligned}
$$

Constraint Satisfaction Problems

IN: set of variables, set of labels, set of constraints
OUT: assignment that satisfies the given constraints

Constraint Satisfaction Problems

IN: set of variables, set of labels, set of constraints
OUT: assignment that satisfies the given constraints

IN: two similar relational structures \mathbb{A} and \mathbb{B}
OUT: homomorphism from \mathbb{A} to \mathbb{B}

3-Colour

\mathbb{B}

3-Colour

\mathbb{B}

CSPs

IN: two similar relational structures \mathbb{A} and \mathbb{B}
OUT: homomorphism from \mathbb{A} to \mathbb{B}

CSDS

IN: two similar relational structures \mathbb{A} and \mathbb{B}
OUT: homomorphism from \mathbb{A} to \mathbb{B}
$\operatorname{CSP}(\mathbb{B})$

CSPs

IN: two similar relational structures \mathbb{A} and \mathbb{B}
OUT: homomorphism from \mathbb{A} to \mathbb{B}
$\operatorname{CSP}(\mathbb{B})$
Boolean \mathbb{B} [Schaefer STOC'78]
graph \mathbb{B} [Hell-Nešetrĭ JCTB'90]
dichotomy conjecture [Feder-Vardi SICOMP'98]
any finite \mathbb{B} [Bulatov FOCS' 1 , Zhuk JACM'20]

CSPs

IN: two similar relational structures \mathbb{A} and \mathbb{B}
OUT: homomorphism from \mathbb{A} to \mathbb{B}

Max-Cut

CSPs

IN: two similar relational structures \mathbb{A} and \mathbb{B}
OUT: homomorphism from \mathbb{A} to \mathbb{B}

Max-Cut

UGC

CSPs

IN: two similar relational structures \mathbb{A} and \mathbb{B}
OUT: homomorphism from \mathbb{A} to \mathbb{B}
(s, t)-Min-Cut

CSPs

IN: two similar relational structures \mathbb{A} and \mathbb{B}
OUT: homomorphism from \mathbb{A} to \mathbb{B}

How to Relax

"I can't find an efficient algorithm, but neither can all these famous people."

How to Relax

"I can't find an efficient algorithm, but neither can all these famous people."
Satisfy only a fraction of the constraints!
Satisfy a relaxed version of the constraints!

Approximate Graph Colouring

Find a c-colouring of a k-colourable graph $(c \geq k \geq 3)$.

Promise CSPs

```
IN: set of variables, set of labels,
set of strict and weak constraints
PROMISE:
OUT:
exists assignment using strict constraints
assignment using weak constraints
```


Promise CSPs

IN:
 PROMISE:

set of variables, set of labels, set of strict and weak constraints exists assignment using strict constraints OUT: assignment using weak constraints

Promise CSPs

IN: set of variables, set of labels, set of strict and weak constraints
 PROMISE: exists assignment using strict constraints OUT: assignment using weak constraints

I-in-3-SAT

$$
(x, y, z)
$$

$(1,0,0)$
(0,1,0)
$(0,0,1)$

NAE-3-SAT

$(1,0,0)$
(0,1,0)
$(0,0,1)$
$(1,1,0)$
(1,0,1)
$(0,1,1)$

PCSP(A, $\mathbb{B})$

```
IN:
set of variables, set of labels,
set of strict and weak constraints
PROMISE:
OUT:
exists assignment using strict constraints
assignment using weak constraints
```


PCSP(A, $\mathbb{B})$

```
IN:
    set of variables, set of labels,
    set of strict and weak constraints
PROMISE:
OUT:
exists assignment using strict constraints assignment using weak constraints
```


PCSP(A, $\mathbb{B})$

IN:

set of variables, set of labels, set of strict and weak constraints

PROMISE:

 OUT: exists assignment using strict constraints assignment using weak constraints
IN:

PROMISE:
exists homomorphism from $\mathbb{\square}$ to \mathbb{A}
OUT:
homomorphism from $\mathbb{\square}$ to \mathbb{B}

PCSP(A, $\mathbb{B})$

IN:
 set of variables, set of labels, set of strict and weak constraints

PROMISE: OUT: exists assignment using strict constraints assignment using weak constraints
search

IN:

PROMISE: exists homomorphism from』 to \mathbb{A}
OUT:
homomorphism from $\mathbb{\square}$ to \mathbb{B}

PCSP(A, $\mathbb{B})$

IN:	\square
PROMISE:	exists homomorphism from \llbracket to \mathbb{A}
OUT:	homomorphism from \llbracket to \mathbb{B}

PCSP(A, $\mathbb{B})$

decision

IN:

OUT YES: OUT NO: if there is no homomorphism from $\sqrt{ }$ to \mathbb{B}

IN:	\square
PROMISE:	exists homomorphism from $\mathbb{\square}$ to \mathbb{A}
OUT:	homomorphism from $\mathbb{\square}$ to \mathbb{B}

PCSP(A, $\mathbb{B})$

decision

IN:
OUT YES: OUT NO:

]

IN:
PROMISE: exists homomorphism from \mathbb{I} to \mathbb{A}
OUT:
homomorphism from $\mathbb{\square}$ to \mathbb{B}

$\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$

- $\operatorname{PCSP}(A, A)=\operatorname{CSP}(A)$
- $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ in P if $\operatorname{CSP}(\mathbb{A})$ in P or $\operatorname{CSP}(\mathbb{B})$ in P
- PCSP(A, $\mathbb{B})$:
- aproximability of CSP(A) on satisfiable instances
- CSP(\mathbb{B}) with restricted instances

3. Results

SetSAT

Thm: ($\mathrm{I}, \mathrm{g}, \mathrm{k})$-SAT in P if $\frac{g}{k} \geq \frac{1}{2}$ and NP-hard otherwise. [Austrin-Guruswami-Håstad SICOMP'I 7]

SetSAT

Thm: (I,g,k)-SAT in P if $\frac{g}{k} \geq \frac{1}{2}$ and NP-hard otherwise. [Austrin-Guruswami-Håstad SICOMP'I7]

Thm: ($\mathrm{I}, \mathrm{g}, \mathrm{k}$)-SetSAT in P if $\frac{g}{k} \geq \frac{s}{s+1}$ and NP-hard otherwise. [Brandts-Wrochna-Živný ACM ToCT'2।]

LO Colouring

LO Colouring

unique maximum

LO Colouring

unique maximum
Problem: Complexity of $\operatorname{PCSP}\left(\mathrm{LO}_{2}, \mathrm{LO}_{c}\right)$? [Barto-Batisistlli-Berg STACS'21]

LO Colouring

unique maximum

LO Colouring

unique maximum

Thm:

- $\operatorname{PCSP}\left(\mathrm{LO}_{k}^{r}, \mathrm{LO}_{c}^{r}\right)$ is NP-hard for all $2 \leq k \leq c$ and $r \geq c-k+4$.

LO Colouring

unique maximum

Thm:

- $\operatorname{PCSP}\left(\mathrm{LO}_{k}^{r}, \mathrm{LO}_{c}^{r}\right)$ is NP-hard for all $2 \leq k \leq c$ and $r \geq c-k+4$.
- $\operatorname{PCSP}\left(\mathrm{LO}_{2}^{3}, \mathrm{LO}_{\ell}^{3}\right)$ in P for $\ell=O(\sqrt[3]{n \log \log n / \log n})$.
$\operatorname{PCSP}\left(K_{3}, K_{5}\right)$

$\operatorname{PCSP}\left(K_{3}, K_{5}\right)$

Thm: $\operatorname{PCSP}\left(K_{3}, K_{5}\right)$ is NP -hard.

$\operatorname{PCSP}\left(K_{3}, K_{5}\right)$

Thm: $\operatorname{PCSP}\left(K_{3}, K_{5}\right)$ is NP -hard.
$\operatorname{PCSP}\left(\mathrm{K}_{\mathrm{k}}, \mathrm{K}_{\mathrm{c}}\right)$ with $c=k$.
$\operatorname{PCSP}\left(\mathrm{K}_{\mathrm{k}}, \mathrm{K}_{\mathrm{c}}\right)$ with $c=k+2\lfloor k / 3\rfloor-1$.
$\operatorname{PCSP}\left(K_{k}, K_{c}\right)$ with $c=2 k-5$ and $k \geq 6$.
$\operatorname{PCSP}\left(K_{k}, K_{c}\right)$ with $c=2 k-2$.
$\operatorname{PCSP}\left(K_{k}, K_{c}\right)$ with $c=2 k-1$.
[Barto-Bulín-Krokhin-Opršal JACM'2 I]
[Karp CCC'72]
[Khanna-Linial-Safra Comb.'00]
[Garey-JohsonJ JACM'76]
[Brakensiek-Guruswami CCC'16]
[Barto-Bulín-Krokhin-Opršal JACM'2 I]

$\operatorname{PCSP}\left(K_{3}, K_{5}\right)$

Thm: $\operatorname{PCSP}\left(K_{3}, K_{5}\right)$ is NP -hard.
$\mathrm{K}_{3}, \mathrm{~K}_{3}-\operatorname{PCSP}\left(\mathrm{K}_{\mathrm{k}}, \mathrm{K}_{\mathrm{c}}\right)$ with $c=k$.
$\operatorname{PCSP}\left(\mathrm{K}_{\mathrm{k}}, \mathrm{K}_{\mathrm{c}}\right)$ with $c=k+2\lfloor k / 3\rfloor-1$.
$\operatorname{PCSP}\left(K_{k}, K_{c}\right)$ with $c=2 k-5$ and $k \geq 6$.
$\operatorname{PCSP}\left(K_{k}, K_{c}\right)$ with $c=2 k-2$.
$\operatorname{PCSP}\left(K_{k}, K_{c}\right)$ with $c=2 k-1$.
[Barto-Bulín-Krokhin-Opršal JACM'2 I]
[Karp CCC'72]
[Khanna-Linial-Safra Comb.'00]
[Garey-JohsonJ JACM'76]
[Brakensiek-Guruswami CCC'16]
[Barto-Bulín-Krokhin-Opršal JACM'2 I]

$\operatorname{PCSP}\left(K_{3}, K_{5}\right)$

Thm: $\operatorname{PCSP}\left(K_{3}, K_{5}\right)$ is NP -hard.
$\mathrm{K}_{3}, \mathrm{~K}_{3}-\operatorname{PCSP}\left(\mathrm{K}_{\mathrm{k}}, K_{c}\right)$ with $c=k$.
$\operatorname{PCSP}\left(\mathrm{K}_{\mathrm{k}}, \mathrm{K}_{\mathrm{c}}\right)$ with $c=k+2\lfloor k / 3\rfloor-1$.
$\mathrm{K}_{3}, \mathrm{~K}_{4} \quad \operatorname{PCSP}\left(\mathrm{~K}_{\mathrm{k}}, \mathrm{K}_{\mathrm{c}}\right)$ with $c=2 k-5$ and $k \geq 6$.
$\operatorname{PCSP}\left(K_{k}, K_{c}\right)$ with $c=2 k-2$.
$\operatorname{PCSP}\left(K_{k}, K_{c}\right)$ with $c=2 k-1$.
[Barto-Bulín-Krokhin-Opršal JACM'2 I]
[Karp CCC'72]
[Khanna-Linial-Safra Comb.'00]
[Garey-JohsonJ JACM'76]
[Brakensiek-Guruswami CCC'16]
[Barto-Bulín-Krokhin-Opršal JACM'2 I]

$\operatorname{PCSP}\left(K_{3}, K_{5}\right)$

Thm: $\operatorname{PCSP}\left(K_{3}, K_{5}\right)$ is NP -hard.
$\mathrm{K}_{3}, \mathrm{~K}_{3} \quad \operatorname{PCSP}\left(\mathrm{~K}_{\mathrm{k}}, \mathrm{K}_{\mathrm{c}}\right)$ with $c=k$.
$\operatorname{PCSP}\left(\mathrm{K}_{\mathrm{k}}, \mathrm{K}_{\mathrm{c}}\right)$ with $c=k+2\lfloor k / 3\rfloor-1$.
$\mathrm{K}_{3}, \mathrm{~K}_{4} \quad \operatorname{PCSP}\left(\mathrm{~K}_{\mathrm{k}}, \mathrm{K}_{\mathrm{c}}\right)$ with $c=2 k-5$ and $k \geq 6$.
$\operatorname{PCSP}\left(K_{k}, K_{c}\right)$ with $c=2 k-2$.
$\mathrm{K}_{3}, \mathrm{~K}_{5}-\operatorname{PCSP}\left(\mathrm{K}_{k}, \mathrm{~K}_{c}\right)$ with $c=2 k-1$.
[Barto-Bulín-Krokhin-Opršal JACM'2 I]
[Karp CCC'72]
[Khanna-Linial-Safra Comb.'00]
[Garey-JohsonJ JACM'76]
[Brakensiek-Guruswami CCC'16]
[Barto-Bulín-Krokhin-Opršal JACM'2 I]

$\operatorname{PCSP}\left(K_{3}, K_{5}\right)$

Thm: $\operatorname{PCSP}\left(K_{3}, K_{5}\right)$ is NP -hard.
[Barto-Bulín-Krokhin-Opršal JACM'2 I]
$\mathrm{K}_{3}, \mathrm{~K}_{3}-\operatorname{PCSP}\left(\mathrm{K}_{\mathrm{k}}, \mathrm{K}_{\mathrm{c}}\right)$ with $c=k$.
[Karp CCC'72]
$\operatorname{PCSP}\left(\mathrm{K}_{\mathrm{k}}, \mathrm{K}_{\mathrm{c}}\right)$ with $c=k+2\lfloor k / 3\rfloor-1$.
$\mathrm{K}_{3}, \mathrm{~K}_{4} \quad \operatorname{PCSP}\left(\mathrm{~K}_{\mathrm{k}}, \mathrm{K}_{\mathrm{c}}\right)$ with $c=2 k-5$ and $k \geq 6$.
$\operatorname{PCSP}\left(\mathrm{K}_{\mathrm{k}}, \mathrm{K}_{\mathrm{c}}\right)$ with $c=2 k-2$.
$\mathrm{K}_{3}, \mathrm{~K}_{5} \quad \operatorname{PCSP}\left(\mathrm{~K}_{\mathrm{k}}, \mathrm{K}_{\mathrm{c}}\right)$ with $c=2 k-1$.
[Khanna-Linial-Safra Comb.'00]
[Garey-JohsonJ JACM'76]
[Brakensiek-Guruswami CCC'16]
[Barto-Bulín-Krokhin-Opršal JACM'2 I]

Thm: $\quad \operatorname{PCSP}\left(\mathrm{K}_{\mathrm{k}}, \mathrm{K}_{\mathrm{c}}\right)$ is NP-hard with $\mathrm{c} \approx 2^{k}$ and $k \geq 4$. [Krokhin-Opršal-Wrochna-Živný SICOMP'23]

IP
$\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ instance $\mathbb{\square}$
$\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ instance $\mathbb{\square}$

$$
\lambda_{\mathbf{x}, R}(\mathbf{a}) \in\{0,1\} \quad R \in \sigma, \mathbf{x} \in R^{0}
$$

IP

$\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ instance $\mathbb{\square}$

$$
\sum_{\mathbf{a} \in R^{\mathbb{A}}} \lambda_{\mathbf{x}, R}(\mathbf{a})=1 \quad R \in \sigma, \mathbf{x} \in R^{0}
$$

$$
\lambda_{\mathbf{x}, R}(\mathbf{a}) \in\{0,1\}
$$

$R \in \sigma, \mathbf{x} \in R^{0}$

IP

$\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ instance $\mathbb{\square}$

$$
\begin{array}{rr}
\sum_{\mathbf{a} \in R^{\mathbb{A}}} \lambda_{\mathbf{x}, R}(\mathbf{a})=1 & R \in \sigma, \mathbf{x} \in R^{0} \\
\sum_{\mathbf{a} \in R^{\mathrm{A}}, a_{i}=a} \lambda_{\mathbf{x}, R}(\mathbf{a})=\lambda_{x_{i}, R_{u}}(a) & a \in A, i \in[\operatorname{ar}(R)] \\
\lambda_{\mathbf{x}, R}(\mathbf{a}) \in\{0,1\} & R \in \sigma, \mathbf{x} \in R^{0}
\end{array}
$$

BLP

$\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ instance 』

$$
\begin{array}{rr}
\sum_{\mathbf{a} \in R^{\mathbb{A}}} \lambda_{\mathbf{x}, R}(\mathbf{a})=1 & R \in \sigma, \mathbf{x} \in R^{0} \\
\sum_{\mathbf{a} \in R^{\mathrm{A}}, a_{i}=a} \lambda_{\mathbf{x}, R}(\mathbf{a})=\lambda_{x_{i}, R_{u}}(a) & a \in A, i \in[\operatorname{ar}(R)] \\
\lambda_{\mathbf{x}, R}(\mathbf{a}) \in[0,1] & R \in \sigma, \mathbf{x} \in R^{0}
\end{array}
$$

AIP

$\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ instance \mathbb{A}

$$
\begin{array}{cc}
\sum_{\mathbf{a} \in R^{\mathbb{A}}} \lambda_{\mathbf{x}, R}(\mathbf{a})=1 & R \in \sigma, \mathbf{x} \in R^{0} \\
\sum_{\mathbf{a} \in R^{\mathrm{A}}, a_{i}=a} \lambda_{\mathbf{x}, R}(\mathbf{a})=\lambda_{x_{i}, R_{u}}(a) & a \in A, i \in[\operatorname{ar}(R)] \\
\lambda_{\mathbf{x}, R}(\mathbf{a}) \in \mathbb{Z} & R \in \sigma, \mathbf{x} \in R^{0}
\end{array}
$$

BA

Run BLP, ignore assignments getting 0 , run AIP.

BA

Run BLP, ignore assignments getting 0 , run AIP.

Thm: BA solves all Boolean CSPs. [Brakensiek-Guruswami-Wrochna-Živny SICOMP’20]

BA

Run BLP, ignore assignments getting 0 , run AIP.

Thm: BA solves all Boolean CSPs. [Brakensiek-Guruswami-Wrochna-Živný SICOMP'20]
Problem: Power of BÁ?

BA

Run BLP, ignore assignments getting 0 , run AIP.

Thm: BA solves all Boolean CSPs. [Brakensiek-Guruswami-Wrochna-Živny SICOMP’20]
Problem: Power of BÁ?

Thm:
AGC not solved by $B A^{k}$.
[Ciardo-Živný STOC'23]

