
Generating maximal feasible solutions for a
chance-constrained knapsack inequality

Khaled Elbassioni

Khalifa University of Science and Technology, Abu Dhabi, UAE

khaled.elbassioni@ku.ac.ae

September 25, 2023



Chance-constrained knapsack inequality

Consider the knapsack problem:

∑
j

ajxj ≤ c

x ∈ {0, 1}n

where aj ≥ 0

The elements of [n] := {1, . . . , n} can be interpreted as items to be
packed into a knapsack of capacity c , where aj represents the size
requirement of item j

In the stochastic version, the vector a = (aj | j ∈ [n]) is drawn from a
multivariate normal distribution with mean ā ∈ Rn

+ and covariance
matrix Σ ⪰ 0, i.e., a ∼ N(ā,Σ)
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Chance-constrained knapsack inequality

Given a ∼ N(ā,Σ) and α ∈ [0, 1], a chance-constrained knapsack
inequality can be written as

Pr[a⊤x ≤ c] ≥ α

x ∈ {0, 1}n

As a⊤x ∼ N(ā⊤x, x⊤Σx), we can reformulate the constraint as

ā⊤x+Φ−1(α)
√
x⊤Σx ≤ c

x ∈ {0, 1}n,

where Φ(·) represents the cumulative distribution function of the
standard normal distribution

Task: Enumerate all maximal feasible solutions for the inequality
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Some interesting special cases

1 Fixed-rank case: covariance matrix Σ has completely positive (cp)

rank d , i.e., we can find a matrix A ∈ Rd×n
+ such that Σ = A⊤A

Example: a = A⊤z + ā, where z1, . . . , zd ∼ N(0, 1) are i.i.d.’s.
We can rewrite the inequality as a second order cone inequality:

∥Ax∥+ b⊤x ≤ t (where b =
ā

Φ−1(α)
and t =

c

Φ−1(α)
)

x ∈ {0, 1}n

2 Independent case: item sizes are independent: A = D is a full-rank
diagonal matrix

aj ∼ N(āj , djj) are independent

3 Simple independent case: A = D is a full-rank diagonal matrix and
there the elements of [n] can be ordered s.t. ā1 ≥ · · · ≥ ān and
d11 ≥ · · · ≥ dnn

E.g.: aj ∼ N(āj , 1) are independent
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Example: a = A⊤z + ā, where z1, . . . , zd ∼ N(0, 1) are i.i.d.’s.
We can rewrite the inequality as a second order cone inequality:

∥Ax∥+ b⊤x ≤ t (where b =
ā
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Monotone systems

Consider a monotone system of inequalities of the form:

fi (x) ≤ ti , for i ∈ [r ] := {1, . . . , r}
x ∈ {0, 1}n

fi : {0, 1}n 7→ R+ is a monotone (non-decreasing) non-negative
function on {0, 1}n:

x, y ∈ {0, 1}n and x ≥ y imply fi (x) ≥ fi (y)

Maximal feasible vector (solution): x ∈ {0, 1}n s.t. x is feasible for
the system and x+ 1j is not feasible for all j ∈ [n]

Minimal infeasible vector: x ∈∈ {0, 1}n is.t. x is infeasible for the
system and x− 1j is feasible for all j ∈ [n] such that xj > 0
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Enumerating maximal feasible solutions for a monotone
System

Consider a monotone system of inequalities of the form:

fi (x) ≤ ti , for i ∈ [r ] := {1, . . . , r}
x ∈ {0, 1}n

F : set of maximal feasible vectors

G: set of minimal infeasible vectors

We are interested in incrementally generating the family F :

GEN(F ′): Given a monotone system, and a subfamily F ′ ⊆ F of
its maximal feasible vectors, either find a new maximal
vector x ∈ F \ F ′, or state that F ′ = F .

Output-sensitive algorithm: running time depends on both input size
n, bit length and output size |F|
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Monotone Boolean Dualization (MBD)

Given a Boolean function f in CNF:

f (x) =
∧
F∈F

∨
i∈F

xi

The objective is to write f in irredundant DNF:

f (x) =
∨
G∈G

∧
i∈G

xi

Well-known problem with many applications

Can be solved in time poly(n) + mo(logm) time, where m = |F|+ |G|
[Fredman and Khachiyan (1996)]

Output-sensitive algorithm: running time depends on both input size
|F|+ n and output size |G|
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Monotone Boolean Dualization (MBD)

Example: Input F =
{
{1, 2, 4}, {2, 3}, {3, 4}

}
f (x) = (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4)

= x1x3 ∨ x2x3 ∨ x2x4 ∨ x1x2x4 ∨ x1x3x4

Same as finding minimal feasible solutions of the following systems:

x1 + x2 + x4 ≥ 1

x2 + x3 ≥ 1

x3 + x4 ≥ 1

x ∈ {0, 1}n

(x1 + x2 + x4)(x2 + x3)(x3 + x4) ≥ 1

x ∈ {0, 1}n

1− (1− x1)(1− x2)(1− x4) + (1− x2)(1− x3) + (1− x3)(1− x4) ≥ 1

x ∈ {0, 1}n
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Monotone systems

Examples

Linear functions: fi (x) :=
∑

j aijxj , where aij ≥ 0

Polynomials:

fi (x) =
∑

H∈Hi
aH

∏
j∈H xj , where Hi ⊆ 2[n] is a given mutliset family

with aH ≥ 0 for all H ∈ Hi

fi (x) = Ri −
∏

k

(∑
i aijk(1− xj)

)
, where aijk ≥ 0, Ri =

∏
i

(∑
j aij

)
Supermodular functions:

f (x ∨ y) + f (x ∧ y) ≥ f (x) + f (y) ∀x, y ∈ {0, 1}

where

(x ∨ y)j = max{xj , yj}
(x ∧ y)j = min{xj , yj}
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Known results

If the fi ’s are linear then the enumeration problem (of maximal
feasible solutions of the system) is polynomially equivalent to MBD,
and thus can be solved in quasi-polynomial time:

More precisely, problem GEN(F ,F ′) can be solved in quasi-polynomial
time ko(log k) time, where k = max{n, r , |F ′|} [Boros et al. (2000)]

If the fi ’s are polynomials of the form fi (x) =
∑

H∈Hi
aH

∏
j∈H xj ,

then GEN(F ,F ′) is polynomially equivalent to MBD [Boros et al.
(2004)]

If the fi ’s are supermodular with integer range {0, 1, . . . ,R}, then
problem is quasi-polynomially equivalent to MBD provided that
R = quasi-poly(Input size):

More precisely, problem GEN(F ,F ′) can be solved in quasi-polynomial
time ko(log k·log(R−t)) time, where k = max{n, r , |F ′|} [Boros et al.
(2002)]
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Chance constrained multi-dimensional knapsack
inequality

So we know how to ”efficiently” enumerate maximal feasible solutions
for a multi-dimensional knapsack problem:

∑
j

aijxj ≤ ti , for i ∈ [r ] := {1, . . . , r}

x ∈ {0, 1}n

For a single inequality (r = 1), enumeration can be done in
polynomial time [Peled and Simeone (1985), Crama (1987)]

What about the chance-constrained version?
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Second-order cone inequality

Consider a second-order cone inequality:

f (x) := ∥Ax∥+ b⊤x ≤ t

where A ∈ Rd×n
+ and b ∈ Rn

+ are given matrix and vector

When b = 0, we can square to reduce to the polynomial case:

x⊤A⊤Ax ≤ t2

When b ̸= 0, squaring does not yield an equivalent problem, and may
also result in a term with a negative coefficient:

x⊤A⊤Ax+ 2tb⊤x− (b⊤x)2 ≤ t2

Example 1:
√
x1 + x2 + 2x1 ≤ 1 → Squaring: x1 + x2 ≤ 1

Example 2:
√
x1 + x2+ x1+ x2 ≤ 2 → Squaring: 2x2+2x2− x1x2 ≤ 2
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Second-order cone inequality

Consider a second-order cone inequality:

f (x) := ∥Ax∥+ b⊤x ≤ t

where A ∈ Rd×n
+ and b ∈ Rn

+ are given matrix and vector

Is f (x) supermodular?

Fact

A function f : {0, 1} → R+ is supermodular if and only if, for any j ∈ [n],
and for any x ∈ {0, 1}n s.t. xj = 0, the difference

∂f (x, j) := f (x+ 1j)− f (x),

is monotone (increasing) in x

Example: ∥Dx∥+ bTx for a diagonal matrix D

∂f (x, j) =
d2
jj

∥D(x+1j )∥+∥Dx∥ + bj is decreasing in x ⇒ f is submodular
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Second-order cone inequality

Consider a second-order cone inequality:

f (x) := ∥Ax∥+ b⊤x ≤ t

where A ∈ Rd×n
+ and b ∈ Rn

+ are given matrix and vector

Theorem

If d = O(1), then all maximal feasible vectors for the second-order cone
inequality can be enumerated in quasi-polynomial time
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Enumeration via joint-generation

Proof is via reduction to MBD via dual-boundedness:

F : set of maximal feasible vectors
G: set of minimal infeasible vectors
We know that MBD is equivalent to enumerating F ∪ G [Bioch and T.
Ibaraki (1995), Gurvich and Khachiyan (1999)]
Only need to show that |G| is ”small”

We show that |G| = O(n)2d+1|F|
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Simple independent case

Consider the simple independent case (item sizes are independent and
b1 ≥ · · · ≥ bn and d11 ≥ · · · ≥ dnn)

Then, f (x) =
√∑

j d
2
jjxj + b⊤x

Use 2-monotonicity [Crama (1987)]:

k < i ⇒ f (y − 1i + 1k)− f (y) ≥ 0

We have

f (y − 1i + 1k )− f (y) =
d2
kk − d2

ii√∑
j ̸=i,k d

2
jjyj + d2

kk +
√∑

j ̸=i,k d
2
jjyj + d2

ii

+ bk − bi ≥ 0

This gives |G| ≤ n|F|

Argument does not work if A = D ̸= I is a (general) diagonal matrix
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Proof of dual-boundedness

First consider a linear system:

∑
i

aijxj ≤ ti , for i ∈ [r ] := {1, . . . , r}

x ∈ {0, 1}n

Each vector ai := (aij | j ∈ [n]) defines (at least) one permutation σai
given by: ai ,σ(1) ≥ ai ,σ(2) ≥ · · · ≥ ai ,σ(n)

It is known [Crama (1987), Boros et al. (2000)] that

|G| ≤ r ′ · n|F|

r ′ := number of distinct permutations defined by the set of vectors
a1, . . . , ar
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Proof of dual-boundedness

Consider the SOC inequaltiy:

f (x) := ∥Ax∥+ b⊤x ≤ t

Let us rewrite the SOC inequality as

fu(x) := u⊤Ax+ b⊤x ≤ t, for u ∈ Bd
+(0, 1)

where Bd
+(0, 1) := {x ∈ Rd

+ : ∥x∥ ≤ 1} the non-negative half of the
d-dimensional unit ball centered at the origin

This is a semi-infinite LP: the u-th constraint is defined by the weight
vector: wu := A⊤u+ b ∈ Rn

+

The question reduces to: How many distinct permutations defined by
the set of weights {wu | u ∈ Bd

+(0, 1)}?
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Number of distinct permutations

Fact

Any arrangement of m d-dimensional hyperplanes partitions Rd into at

most Φd(m) :=
∑d

i=0

(m
i

)
≤

(
em
d

)d
maximal connected regions not

intersected by any of the hyperplanes (called cells of the arrangement).

We show that

|{σau | u ∈ Bd
+(0, 1)}| ≤ Φd(n(n − 1)/2) = O(n)2d

Write A = [a1, . . . , an] where aj ∈ Rd
+ is the j-th column of A

Then wj = wu
j = (aj)⊤u+ bj

The system of inequalities wj ≤ wj′ for j , j
′ ∈ [n] (considering u as a

variable in Rd) defines a hyperplane arrangement:(
aj − aj

′
)⊤

u ≤ bj′ − bj , for j ̸= j ′ ∈ [n].
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Chance-constraint multi-dimensional knapsack

Given vectors ai = (aij | j ∈ [n]) drawn from a multivariate normal
distribution with mean āi ∈ Rn

+ and covariance matrix Σi ⪰ 0, i.e.,

ai ∼ N(āi ,Σi ):

Pr[(ai )⊤x ≤ ti ] ≥ αi , for i ∈ [r ],

x ∈ {0, 1}n

We can show that |G| = O(n)2d+1r |F|, where d := maxi di

Consequently, if d = O(1), then all maximal feasible vectors can be
enumerated in quasi-polynomial time
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Enumerating minimal feasible solutions

Consider the covering inequality

g(x) := ∥Dx∥+ b⊤x ≥ t

x ∈ {0, 1}n

where D ∈ Rn×n
+ is a diagonal matrix (independent case)

F : set of maximal infeasible vectors

G: set of minimal feasible vectors

Previous argument does not work

and even if it works, it would give |F| = O(n)2n+1|G|

Better bound via supermodularity: |F| ≤ |G|o(log
t
τ
):
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Enumerating minimal feasible solutions

Better bound via supermodularity: |F| ≤ |G|o(log
t
τ
):

f (x) := R − ∥D(1− x)∥ − b⊤(1− x) ≤ R − t

Range: R :=
√
nDmax + nbmax, where Dmax := maxj djj and

bmax := maxj bj
Traction:

τ := min
j∈[n], x∈{0,1}, xj=0

f (x+1j )>f (x)

f (x+ 1j)− f (x) ≥ min

{
D2

min

2
√
nDmax

, bmin

}

where Dmin = min{djj | djj > 0}, bmin = min{bj | bj > 0}
Based on extending the result in [Boros et al. (2002)] for
integer-valued supermodular functions

Consequently, if the entries of D and b are polynomial in n, we get a
quasi-polynomial time enumeration algorithm
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Some open questions

Can we show |G| = poly(n, d , |F|) (for the SOC inequality)?

in comparison to |G| = O(n)2d+1|F|
Is there a polynomial time enumeration algorithm for a single
chance-constraint knapsack inequality?

in comparison to a quasi-polynomial time algorithm
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Thank you
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