Generating maximal feasible solutions for a chance-constrained knapsack inequality

Khaled Elbassioni

Khalifa University of Science and Technology, Abu Dhabi, UAE khaled.elbassioni@ku.ac.ae

September 25, 2023

Chance-constrained knapsack inequality

- Consider the knapsack problem:

$$
\begin{aligned}
& \sum_{j} a_{j} x_{j} \leq c \\
& \mathbf{x} \in\{0,1\}^{n}
\end{aligned}
$$

where $a_{j} \geq 0$

- The elements of $[n]:=\{1, \ldots, n\}$ can be interpreted as items to be packed into a knapsack of capacity c, where a_{j} represents the size requirement of item j

Chance-constrained knapsack inequality

- Consider the knapsack problem:

$$
\begin{aligned}
& \sum_{j} a_{j} x_{j} \leq c \\
& \mathbf{x} \in\{0,1\}^{n}
\end{aligned}
$$

where $a_{j} \geq 0$

- The elements of $[n]:=\{1, \ldots, n\}$ can be interpreted as items to be packed into a knapsack of capacity c, where a_{j} represents the size requirement of item j
- In the stochastic version, the vector $\mathbf{a}=\left(a_{j} \mid j \in[n]\right)$ is drawn from a multivariate normal distribution with mean $\overline{\mathbf{a}} \in \mathbb{R}_{+}^{n}$ and covariance matrix $\Sigma \succeq 0$, i.e., $\mathbf{a} \sim N(\overline{\mathbf{a}}, \Sigma)$

Chance-constrained knapsack inequality

- Given $\mathbf{a} \sim N(\overline{\mathbf{a}}, \Sigma)$ and $\alpha \in[0,1]$, a chance-constrained knapsack inequality can be written as

$$
\begin{gathered}
\operatorname{Pr}\left[\mathbf{a}^{\top} \mathbf{x} \leq c\right] \geq \alpha \\
\mathbf{x} \in\{0,1\}^{n}
\end{gathered}
$$

Chance-constrained knapsack inequality

- Given $\mathbf{a} \sim N(\overline{\mathbf{a}}, \Sigma)$ and $\alpha \in[0,1]$, a chance-constrained knapsack inequality can be written as

$$
\begin{gathered}
\operatorname{Pr}\left[\mathbf{a}^{\top} \mathbf{x} \leq c\right] \geq \alpha \\
\mathbf{x} \in\{0,1\}^{n}
\end{gathered}
$$

- As $\mathbf{a}^{\top} \mathbf{x} \sim N\left(\overline{\mathbf{a}}^{\top} \mathbf{x}, \mathbf{x}^{\top} \Sigma \mathbf{x}\right)$, we can reformulate the constraint as

$$
\begin{aligned}
& \overline{\mathbf{a}}^{\top} \mathbf{x}+\Phi^{-1}(\alpha) \sqrt{\mathbf{x}^{\top} \Sigma \mathbf{x}} \leq c \\
& \quad \mathbf{x} \in\{0,1\}^{n},
\end{aligned}
$$

where $\Phi(\cdot)$ represents the cumulative distribution function of the standard normal distribution

- Given $\mathbf{a} \sim N(\overline{\mathbf{a}}, \Sigma)$ and $\alpha \in[0,1]$, a chance-constrained knapsack inequality can be written as

$$
\begin{gathered}
\operatorname{Pr}\left[\mathbf{a}^{\top} \mathbf{x} \leq c\right] \geq \alpha \\
\mathbf{x} \in\{0,1\}^{n}
\end{gathered}
$$

- As $\mathbf{a}^{\top} \mathbf{x} \sim N\left(\overline{\mathbf{a}}^{\top} \mathbf{x}, \mathbf{x}^{\top} \Sigma \mathbf{x}\right)$, we can reformulate the constraint as

$$
\begin{aligned}
& \overline{\mathbf{a}}^{\top} \mathbf{x}+\Phi^{-1}(\alpha) \sqrt{\mathbf{x}^{\top} \Sigma \mathbf{x}} \leq c \\
& \quad \mathbf{x} \in\{0,1\}^{n},
\end{aligned}
$$

where $\Phi(\cdot)$ represents the cumulative distribution function of the standard normal distribution

- Task: Enumerate all maximal feasible solutions for the inequality

Some interesting special cases

- Fixed-rank case: covariance matrix Σ has completely positive (cp) rank d, i.e., we can find a matrix $A \in \mathbb{R}_{+}^{d \times n}$ such that $\Sigma=A^{\top} A$
- Example: $a=A^{\top} z+\bar{a}$, where $z_{1}, \ldots, z_{d} \sim N(0,1)$ are i.i.d.'s.
- We can rewrite the inequality as a second order cone inequality:

$$
\begin{aligned}
& \|A \mathbf{x}\|+\mathbf{b}^{\top} \mathbf{x} \leq t \quad\left(\text { where } \mathbf{b}=\frac{\overline{\mathbf{a}}}{\Phi^{-1}(\alpha)} \text { and } t=\frac{c}{\Phi^{-1}(\alpha)}\right) \\
& \quad \mathbf{x} \in\{0,1\}^{n}
\end{aligned}
$$

Some interesting special cases

- Fixed-rank case: covariance matrix Σ has completely positive (cp) rank d, i.e., we can find a matrix $A \in \mathbb{R}_{+}^{d \times n}$ such that $\Sigma=A^{\top} A$
- Example: $a=A^{\top} z+\bar{a}$, where $z_{1}, \ldots, z_{d} \sim N(0,1)$ are i.i.d.'s.
- We can rewrite the inequality as a second order cone inequality:

$$
\begin{aligned}
& \|A \mathbf{x}\|+\mathbf{b}^{\top} \mathbf{x} \leq t \quad\left(\text { where } \mathbf{b}=\frac{\overline{\mathbf{a}}}{\Phi^{-1}(\alpha)} \text { and } t=\frac{c}{\Phi^{-1}(\alpha)}\right) \\
& \quad \mathbf{x} \in\{0,1\}^{n}
\end{aligned}
$$

- Independent case: item sizes are independent: $A=D$ is a full-rank diagonal matrix
- $a_{j} \sim N\left(\bar{a}_{j}, d_{j j}\right)$ are independent

Some interesting special cases

- Fixed-rank case: covariance matrix Σ has completely positive (cp) rank d, i.e., we can find a matrix $A \in \mathbb{R}_{+}^{d \times n}$ such that $\Sigma=A^{\top} A$
- Example: $a=A^{\top} z+\bar{a}$, where $z_{1}, \ldots, z_{d} \sim N(0,1)$ are i.i.d.'s.
- We can rewrite the inequality as a second order cone inequality:

$$
\begin{aligned}
& \|A \mathbf{x}\|+\mathbf{b}^{\top} \mathbf{x} \leq t \quad\left(\text { where } \mathbf{b}=\frac{\overline{\mathbf{a}}}{\Phi^{-1}(\alpha)} \text { and } t=\frac{c}{\Phi^{-1}(\alpha)}\right) \\
& \quad \mathbf{x} \in\{0,1\}^{n}
\end{aligned}
$$

- Independent case: item sizes are independent: $A=D$ is a full-rank diagonal matrix
- $a_{j} \sim N\left(\bar{a}_{j}, d_{j j}\right)$ are independent
- Simple independent case: $A=D$ is a full-rank diagonal matrix and there the elements of $[n]$ can be ordered s.t. $\bar{a}_{1} \geq \cdots \geq \bar{a}_{n}$ and $d_{11} \geq \cdots \geq d_{n n}$
- E.g.: $a_{j} \sim N\left(\bar{a}_{j}, 1\right)$ are independent

Monotone systems

- Consider a monotone system of inequalities of the form:

$$
\begin{aligned}
& f_{i}(\mathbf{x}) \leq t_{i}, \quad \text { for } i \in[r]:=\{1, \ldots, r\} \\
& \mathbf{x} \in\{0,1\}^{n}
\end{aligned}
$$

- $f_{i}:\{0,1\}^{n} \mapsto \mathbb{R}_{+}$is a monotone (non-decreasing) non-negative function on $\{0,1\}^{n}$:

$$
\mathbf{x}, \mathbf{y} \in\{0,1\}^{n} \text { and } \mathbf{x} \geq \mathbf{y} \quad \text { imply } f_{i}(\mathbf{x}) \geq f_{i}(\mathbf{y})
$$

- Maximal feasible vector (solution): $\mathbf{x} \in\{0,1\}^{n}$ s.t. \mathbf{x} is feasible for the system and $\mathbf{x}+\mathbf{1}^{j}$ is not feasible for all $j \in[n]$
- Minimal infeasible vector: $\mathbf{x} \in \in\{0,1\}^{n}$ is.t. \mathbf{x} is infeasible for the system and $\mathbf{x}-\mathbf{1}^{j}$ is feasible for all $j \in[n]$ such that $x_{j}>0$

Enumerating maximal feasible solutions for a monotone System

- Consider a monotone system of inequalities of the form:

$$
\begin{aligned}
& f_{i}(\mathbf{x}) \leq t_{i}, \quad \text { for } i \in[r]:=\{1, \ldots, r\} \\
& \mathbf{x} \in\{0,1\}^{n}
\end{aligned}
$$

- \mathcal{F} : set of maximal feasible vectors
- \mathcal{G} : set of minimal infeasible vectors

Enumerating maximal feasible solutions for a monotone System

- Consider a monotone system of inequalities of the form:

$$
\begin{aligned}
& f_{i}(\mathbf{x}) \leq t_{i}, \quad \text { for } i \in[r]:=\{1, \ldots, r\} \\
& \mathbf{x} \in\{0,1\}^{n}
\end{aligned}
$$

- \mathcal{F} : set of maximal feasible vectors
- \mathcal{G} : set of minimal infeasible vectors
- We are interested in incrementally generating the family \mathcal{F} :
$\operatorname{GEN}\left(\mathcal{F}^{\prime}\right)$: Given a monotone system, and a subfamily $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ of its maximal feasible vectors, either find a new maximal vector $\mathbf{x} \in \mathcal{F} \backslash \mathcal{F}^{\prime}$, or state that $\mathcal{F}^{\prime}=\mathcal{F}$.

Enumerating maximal feasible solutions for a monotone
 System

- Consider a monotone system of inequalities of the form:

$$
\begin{aligned}
& f_{i}(\mathbf{x}) \leq t_{i}, \quad \text { for } i \in[r]:=\{1, \ldots, r\} \\
& \mathbf{x} \in\{0,1\}^{n}
\end{aligned}
$$

- \mathcal{F} : set of maximal feasible vectors
- \mathcal{G} : set of minimal infeasible vectors
- We are interested in incrementally generating the family \mathcal{F} :
$\operatorname{GEN}\left(\mathcal{F}^{\prime}\right)$: Given a monotone system, and a subfamily $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ of its maximal feasible vectors, either find a new maximal vector $\mathbf{x} \in \mathcal{F} \backslash \mathcal{F}^{\prime}$, or state that $\mathcal{F}^{\prime}=\mathcal{F}$.
- Output-sensitive algorithm: running time depends on both input size n, bit length and output size $|\mathcal{F}|$

Monotone Boolean Dualization (MBD)

- Given a Boolean function f in CNF:

$$
f(\mathbf{x})=\bigwedge_{F \in \mathcal{F}} \bigvee_{i \in F} x_{i}
$$

- The objective is to write f in irredundant DNF:

$$
f(\mathbf{x})=\bigvee_{G \in \mathcal{G}} \bigwedge_{i \in G} x_{i}
$$

- Well-known problem with many applications
- Can be solved in time poly $(n)+m^{\circ(\log m)}$ time, where $m=|\mathcal{F}|+|\mathcal{G}|$ [Fredman and Khachiyan (1996)]
- Output-sensitive algorithm: running time depends on both input size $|\mathcal{F}|+n$ and output size $|\mathcal{G}|$

Monotone Boolean Dualization (MBD)

- Example: Input $\mathcal{F}=\{\{1,2,4\},\{2,3\},\{3,4\}\}$

$$
\begin{aligned}
f(\mathbf{x}) & =\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \\
& =x_{1} x_{3} \vee x_{2} x_{3} \vee x_{2} x_{4} \vee x_{1} x_{2} x_{4} \vee x_{1} x_{3} x_{4}
\end{aligned}
$$

- Same as finding minimal feasible solutions of the following systems:

$$
\begin{aligned}
& x_{1}+x_{2}+x_{4} \geq 1 \\
& x_{2}+x_{3} \geq 1 \\
& x_{3}+x_{4} \geq 1 \\
& \mathbf{x} \in\{0,1\}^{n}\left(x_{1}+x_{2}+x_{4}\right)\left(x_{2}+x_{3}\right)\left(x_{3}+x_{4}\right) \geq 1 \\
& \mathbf{x} \in\{0,1\}^{n} \\
& 1-\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{4}\right)+\left(1-x_{2}\right)\left(1-x_{3}\right)+\left(1-x_{3}\right)\left(1-x_{4}\right) \geq 1 \\
& \mathbf{x} \in\{0,1\}^{n}
\end{aligned}
$$

Monotone Boolean Dualization (MBD)

- Example: Input $\mathcal{F}=\{\{1,2,4\},\{2,3\},\{3,4\}\}$

$$
\begin{aligned}
f(\mathbf{x}) & =\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \\
& =x_{1} x_{3} \vee x_{2} x_{3} \vee x_{2} x_{4} \vee x_{1} x_{2} x_{4} \vee x_{1} x_{3} x_{4}
\end{aligned}
$$

- Same as finding maximal feasible solutions of the following systems:

$$
\left.\begin{array}{rl}
x_{1}+x_{2}+x_{4} & \leq 2 \\
x_{2}+x_{3} & \leq 1 \\
x_{3}+x_{4} & \leq 1 \\
\mathbf{x} \in\{0,1\}^{n} \\
12-\left(3-x_{1}-x_{2}-x_{4}\right)\left(2-x_{2}-x_{3}\right)\left(2-x_{3}-x_{4}\right) \leq 11 \\
\mathbf{x} & \in\{0,1\}^{n} \\
x_{1} x_{2} x_{4}+x_{2} x_{3}+x_{3} x_{4} & \leq 0, \quad \mathbf{x}
\end{array}\right\}\{0,1\}^{n} .
$$

Monotone systems

- Examples
- Linear functions: $f_{i}(\mathbf{x}):=\sum_{j} a_{i j} x_{j}$, where $a_{i j} \geq 0$

Monotone systems

- Examples
- Linear functions: $f_{i}(\mathbf{x}):=\sum_{j} a_{i j} x_{j}$, where $a_{i j} \geq 0$
- Polynomials:
- $f_{i}(\mathbf{x})=\sum_{H \in \mathcal{H}_{i}} a_{H} \prod_{j \in H} x_{j}$, where $\mathcal{H}_{i} \subseteq 2^{[n]}$ is a given mutliset family with $a_{H} \geq 0$ for all $H \in \mathcal{H}_{i}$
- $f_{i}(\mathbf{x})=R_{i}-\prod_{k}\left(\sum_{i} a_{i j k}\left(1-x_{j}\right)\right)$, where $a_{i j k} \geq 0, R_{i}=\prod_{i}\left(\sum_{j} a_{i j}\right)$

Monotone systems

- Examples
- Linear functions: $f_{i}(\mathbf{x}):=\sum_{j} a_{i j} x_{j}$, where $a_{i j} \geq 0$
- Polynomials:
- $f_{i}(\mathbf{x})=\sum_{H \in \mathcal{H}_{i}} a_{H} \prod_{j \in H} x_{j}$, where $\mathcal{H}_{i} \subseteq 2^{[n]}$ is a given mutliset family with $a_{H} \geq 0$ for all $H \in \mathcal{H}_{i}$
- $f_{i}(\mathbf{x})=R_{i}-\prod_{k}\left(\sum_{i} a_{i j k}\left(1-x_{j}\right)\right)$, where $a_{i j k} \geq 0, R_{i}=\prod_{i}\left(\sum_{j} a_{i j}\right)$
- Supermodular functions:

$$
f(\mathbf{x} \vee \mathbf{y})+f(\mathbf{x} \wedge \mathbf{y}) \geq f(\mathbf{x})+f(\mathbf{y}) \quad \forall \mathbf{x}, \mathbf{y} \in\{0,1\}
$$

where

- $(\mathbf{x} \vee \mathbf{y})_{j}=\max \left\{x_{j}, y_{j}\right\}$
- $(\mathbf{x} \wedge \mathbf{y})_{j}=\min \left\{x_{j}, y_{j}\right\}$

Known results

- If the f_{i} 's are linear then the enumeration problem (of maximal feasible solutions of the system) is polynomially equivalent to MBD, and thus can be solved in quasi-polynomial time:
- More precisely, problem $\operatorname{GEN}\left(\mathcal{F}, \mathcal{F}^{\prime}\right)$ can be solved in quasi-polynomial time $k^{o(\log k)}$ time, where $k=\max \left\{n, r,\left|\mathcal{F}^{\prime}\right|\right\}$ [Boros et al. (2000)]

Known results

- If the f_{i} 's are linear then the enumeration problem (of maximal feasible solutions of the system) is polynomially equivalent to MBD, and thus can be solved in quasi-polynomial time:
- More precisely, problem $\operatorname{GEN}\left(\mathcal{F}, \mathcal{F}^{\prime}\right)$ can be solved in quasi-polynomial time $k^{o(\log k)}$ time, where $k=\max \left\{n, r,\left|\mathcal{F}^{\prime}\right|\right\}$ [Boros et al. (2000)]
- If the f_{i} 's are polynomials of the form $f_{i}(\mathbf{x})=\sum_{H \in \mathcal{H}_{i}} a_{H} \prod_{j \in H} x_{j}$, then $\operatorname{GEN}\left(\mathcal{F}, \mathcal{F}^{\prime}\right)$ is polynomially equivalent to MBD [Boros et al. (2004)]
- If the f_{i} 's are linear then the enumeration problem (of maximal feasible solutions of the system) is polynomially equivalent to MBD, and thus can be solved in quasi-polynomial time:
- More precisely, problem $\operatorname{GEN}\left(\mathcal{F}, \mathcal{F}^{\prime}\right)$ can be solved in quasi-polynomial time $k^{o(\log k)}$ time, where $k=\max \left\{n, r,\left|\mathcal{F}^{\prime}\right|\right\}$ [Boros et al. (2000)]
- If the f_{i} 's are polynomials of the form $f_{i}(\mathbf{x})=\sum_{H \in \mathcal{H}_{i}} a_{H} \prod_{j \in H} x_{j}$, then $\operatorname{GEN}\left(\mathcal{F}, \mathcal{F}^{\prime}\right)$ is polynomially equivalent to MBD [Boros et al. (2004)]
- If the f_{i} 's are supermodular with integer range $\{0,1, \ldots, R\}$, then problem is quasi-polynomially equivalent to MBD provided that $R=$ quasi-poly(Input size):
- More precisely, problem $\operatorname{GEN}\left(\mathcal{F}, \mathcal{F}^{\prime}\right)$ can be solved in quasi-polynomial time $k^{o(\log k \cdot \log (R-t))}$ time, where $k=\max \left\{n, r,\left|\mathcal{F}^{\prime}\right|\right\}[$ Boros et al. (2002)]

Chance constrained multi-dimensional knapsack inequality

- So we know how to "efficiently" enumerate maximal feasible solutions for a multi-dimensional knapsack problem:

$$
\begin{aligned}
& \sum_{j} a_{i j} x_{j} \leq t_{i}, \quad \text { for } i \in[r]:=\{1, \ldots, r\} \\
& \mathbf{x} \in\{0,1\}^{n}
\end{aligned}
$$

- For a single inequality $(r=1)$, enumeration can be done in polynomial time [Peled and Simeone (1985), Crama (1987)]
- What about the chance-constrained version?

Second-order cone inequality

- Consider a second-order cone inequality:

$$
f(\mathbf{x}):=\|A \mathbf{x}\|+\mathbf{b}^{\top} \mathbf{x} \leq t
$$

where $A \in \mathbb{R}_{+}^{d \times n}$ and $\mathbf{b} \in \mathbb{R}_{+}^{n}$ are given matrix and vector

- When $b=\mathbf{0}$, we can square to reduce to the polynomial case:

$$
\mathbf{x}^{\top} A^{\top} A \mathbf{x} \leq t^{2}
$$

Second-order cone inequality

- Consider a second-order cone inequality:

$$
f(\mathbf{x}):=\|A \mathbf{x}\|+\mathbf{b}^{\top} \mathbf{x} \leq t
$$

where $A \in \mathbb{R}_{+}^{d \times n}$ and $\mathbf{b} \in \mathbb{R}_{+}^{n}$ are given matrix and vector

- When $b=\mathbf{0}$, we can square to reduce to the polynomial case:

$$
\mathbf{x}^{\top} A^{\top} A \mathbf{x} \leq t^{2}
$$

- When $\mathbf{b} \neq \mathbf{0}$, squaring does not yield an equivalent problem, and may also result in a term with a negative coefficient:

$$
\mathbf{x}^{\top} A^{\top} A \mathbf{x}+2 t \mathbf{b}^{\top} \mathbf{x}-\left(\mathbf{b}^{\top} \mathbf{x}\right)^{2} \leq t^{2}
$$

Second-order cone inequality

- Consider a second-order cone inequality:

$$
f(\mathbf{x}):=\|A \mathbf{x}\|+\mathbf{b}^{\top} \mathbf{x} \leq t
$$

where $A \in \mathbb{R}_{+}^{d \times n}$ and $\mathbf{b} \in \mathbb{R}_{+}^{n}$ are given matrix and vector

- When $b=\mathbf{0}$, we can square to reduce to the polynomial case:

$$
\mathbf{x}^{\top} A^{\top} A \mathbf{x} \leq t^{2}
$$

- When $\mathbf{b} \neq \mathbf{0}$, squaring does not yield an equivalent problem, and may also result in a term with a negative coefficient:

$$
\mathbf{x}^{\top} A^{\top} A \mathbf{x}+2 t \mathbf{b}^{\top} \mathbf{x}-\left(\mathbf{b}^{\top} \mathbf{x}\right)^{2} \leq t^{2}
$$

- Example 1: $\sqrt{x_{1}+x_{2}}+2 x_{1} \leq 1 \rightarrow$ Squaring: $x_{1}+x_{2} \leq 1$
- Example 2: $\sqrt{x_{1}+x_{2}}+x_{1}+x_{2} \leq 2 \rightarrow$ Squaring: $2 x_{2}+2 x_{2}-x_{1} x_{2} \leq 2$

Second-order cone inequality

- Consider a second-order cone inequality:

$$
f(\mathbf{x}):=\|A \mathbf{x}\|+\mathbf{b}^{\top} \mathbf{x} \leq t
$$

where $A \in \mathbb{R}_{+}^{d \times n}$ and $\mathbf{b} \in \mathbb{R}_{+}^{n}$ are given matrix and vector

- Is $f(\mathbf{x})$ supermodular?

Fact

A function $f:\{0,1\} \rightarrow \mathbb{R}_{+}$is supermodular if and only if, for any $j \in[n]$, and for any $\mathbf{x} \in\{0,1\}^{n}$ s.t. $x_{j}=0$, the difference

$$
\partial_{f}(\mathbf{x}, j):=f\left(\mathbf{x}+\mathbf{1}^{j}\right)-f(\mathbf{x})
$$

is monotone (increasing) in \mathbf{x}

Second-order cone inequality

- Consider a second-order cone inequality:

$$
f(\mathbf{x}):=\|A \mathbf{x}\|+\mathbf{b}^{\top} \mathbf{x} \leq t
$$

where $A \in \mathbb{R}_{+}^{d \times n}$ and $\mathbf{b} \in \mathbb{R}_{+}^{n}$ are given matrix and vector

- Is $f(\mathbf{x})$ supermodular?

Fact

A function $f:\{0,1\} \rightarrow \mathbb{R}_{+}$is supermodular if and only if, for any $j \in[n]$, and for any $\mathbf{x} \in\{0,1\}^{n}$ s.t. $x_{j}=0$, the difference

$$
\partial_{f}(\mathbf{x}, j):=f\left(\mathbf{x}+\mathbf{1}^{j}\right)-f(\mathbf{x})
$$

is monotone (increasing) in \mathbf{x}

- Example: $\|D \mathbf{x}\|+\mathbf{b}^{T} \mathbf{x}$ for a diagonal matrix D
- $\partial_{f}(\mathbf{x}, j)=\frac{d_{j}^{2}}{\left\|D\left(\mathbf{x}+\mathbf{1}^{j}\right)\right\|+\|D \mathbf{x}\|}+b_{j}$ is decreasing in $\mathbf{x} \Rightarrow f$ is submodular

Second-order cone inequality

- Consider a second-order cone inequality:

$$
f(\mathbf{x}):=\|A \mathbf{x}\|+\mathbf{b}^{\top} \mathbf{x} \leq t
$$

where $A \in \mathbb{R}_{+}^{d \times n}$ and $\mathbf{b} \in \mathbb{R}_{+}^{n}$ are given matrix and vector

Theorem

If $d=O(1)$, then all maximal feasible vectors for the second-order cone inequality can be enumerated in quasi-polynomial time

Enumeration via joint-generation

- Proof is via reduction to MBD via dual-boundedness:
- \mathcal{F} : set of maximal feasible vectors
- \mathcal{G} : set of minimal infeasible vectors
- We know that MBD is equivalent to enumerating $\mathcal{F} \cup \mathcal{G}$ [Bioch and T . Ibaraki (1995), Gurvich and Khachiyan (1999)]
- Only need to show that $|\mathcal{G}|$ is "small"

Enumeration via joint-generation

- Proof is via reduction to MBD via dual-boundedness:
- \mathcal{F} : set of maximal feasible vectors
- \mathcal{G} : set of minimal infeasible vectors
- We know that MBD is equivalent to enumerating $\mathcal{F} \cup \mathcal{G}$ [Bioch and T . Ibaraki (1995), Gurvich and Khachiyan (1999)]
- Only need to show that $|\mathcal{G}|$ is "small"
- We show that $|\mathcal{G}|=O(n)^{2 d+1}|\mathcal{F}|$

Simple independent case

- Consider the simple independent case (item sizes are independent and $b_{1} \geq \cdots \geq b_{n}$ and $\left.d_{11} \geq \cdots \geq d_{n n}\right)$
- Then, $f(\mathbf{x})=\sqrt{\sum_{j} d_{j j}^{2} x_{j}}+\mathbf{b}^{\top} \mathbf{x}$
- Use 2-monotonicity [Crama (1987)]:

$$
k<i \Rightarrow f\left(\mathbf{y}-\mathbf{1}^{i}+\mathbf{1}^{k}\right)-f(\mathbf{y}) \geq 0
$$

- This gives $|\mathcal{G}| \leq n|\mathcal{F}|$

Simple independent case

- Consider the simple independent case (item sizes are independent and $b_{1} \geq \cdots \geq b_{n}$ and $\left.d_{11} \geq \cdots \geq d_{n n}\right)$
- Then, $f(\mathbf{x})=\sqrt{\sum_{j} d_{j j}^{2} x_{j}}+\mathbf{b}^{\top} \mathbf{x}$
- Use 2-monotonicity [Crama (1987)]:

$$
k<i \Rightarrow f\left(\mathbf{y}-\mathbf{1}^{i}+\mathbf{1}^{k}\right)-f(\mathbf{y}) \geq 0
$$

- We have

$$
f\left(\mathbf{y}-\mathbf{1}^{i}+\mathbf{1}^{k}\right)-f(\mathbf{y})=\frac{d_{k k}^{2}-d_{i i}^{2}}{\sqrt{\sum_{j \neq i, k} d_{j j}^{2} y_{j}+d_{k k}^{2}}+\sqrt{\sum_{j \neq i, k} d_{j j}^{2} y_{j}+d_{i i}^{2}}}+b_{k}-b_{i} \geq 0
$$

- This gives $|\mathcal{G}| \leq n|\mathcal{F}|$

Simple independent case

- Consider the simple independent case (item sizes are independent and $b_{1} \geq \cdots \geq b_{n}$ and $\left.d_{11} \geq \cdots \geq d_{n n}\right)$
- Then, $f(\mathbf{x})=\sqrt{\sum_{j} d_{j j}^{2} x_{j}}+\mathbf{b}^{\top} \mathbf{x}$
- Use 2-monotonicity [Crama (1987)]:

$$
k<i \Rightarrow f\left(\mathbf{y}-\mathbf{1}^{i}+\mathbf{1}^{k}\right)-f(\mathbf{y}) \geq 0
$$

- We have

$$
f\left(\mathbf{y}-\mathbf{1}^{i}+\mathbf{1}^{k}\right)-f(\mathbf{y})=\frac{d_{k k}^{2}-d_{i i}^{2}}{\sqrt{\sum_{j \neq i, k} d_{j j}^{2} y_{j}+d_{k k}^{2}}+\sqrt{\sum_{j \neq i, k} d_{j i j}^{2} y_{j}+d_{i i}^{2}}}+b_{k}-b_{i} \geq 0
$$

- This gives $|\mathcal{G}| \leq n|\mathcal{F}|$
- Argument does not work if $A=D \neq I$ is a (general) diagonal matrix

Proof of dual-boundedness

- First consider a linear system:

$$
\begin{aligned}
& \sum_{i} a_{i j} x_{j} \leq t_{i}, \quad \text { for } i \in[r]:=\{1, \ldots, r\} \\
& \mathbf{x} \in\{0,1\}^{n}
\end{aligned}
$$

- Each vector $\mathbf{a}^{i}:=\left(a_{i j} \mid j \in[n]\right)$ defines (at least) one permutation $\sigma_{\mathbf{a}^{i}}$ given by: $a_{i, \sigma(1)} \geq a_{i, \sigma(2)} \geq \cdots \geq a_{i, \sigma(n)}$
- It is known [Crama (1987), Boros et al. (2000)] that

$$
|\mathcal{G}| \leq r^{\prime} \cdot n|\mathcal{F}|
$$

- $r^{\prime}:=$ number of distinct permutations defined by the set of vectors $\mathbf{a}^{1}, \ldots, \mathbf{a}^{r}$

Proof of dual-boundedness

- Consider the SOC inequaltiy:

$$
f(\mathbf{x}):=\|A \mathbf{x}\|+\mathbf{b}^{\top} \mathbf{x} \leq t
$$

- Let us rewrite the SOC inequality as

$$
f_{\mathbf{u}}(\mathbf{x}):=\mathbf{u}^{\top} A \mathbf{x}+\mathbf{b}^{\top} \mathbf{x} \leq t, \quad \text { for } \mathbf{u} \in \mathbb{B}_{+}^{d}(0,1)
$$

where $\mathbb{B}_{+}^{d}(0,1):=\left\{\mathbf{x} \in \mathbb{R}_{+}^{d}:\|\mathbf{x}\| \leq 1\right\}$ the non-negative half of the d-dimensional unit ball centered at the origin

- This is a semi-infinite LP: the \mathbf{u}-th constraint is defined by the weight vector: $\mathbf{w}^{\mathbf{u}}:=A^{\top} \mathbf{u}+\mathbf{b} \in \mathbb{R}_{+}^{n}$
- The question reduces to: How many distinct permutations defined by the set of weights $\left\{\mathbf{w}^{\mathbf{u}} \mid \mathbf{u} \in \mathbb{B}_{+}^{d}(0,1)\right\}$?

Number of distinct permutations

Fact

Any arrangement of $m d$-dimensional hyperplanes partitions \mathbb{R}^{d} into at most $\Phi_{d}(m):=\sum_{i=0}^{d}\binom{m}{i} \leq\left(\frac{e m}{d}\right)^{d}$ maximal connected regions not intersected by any of the hyperplanes (called cells of the arrangement).

Number of distinct permutations

Fact

Any arrangement of $m d$-dimensional hyperplanes partitions \mathbb{R}^{d} into at most $\Phi_{d}(m):=\sum_{i=0}^{d}\binom{m}{i} \leq\left(\frac{e m}{d}\right)^{d}$ maximal connected regions not intersected by any of the hyperplanes (called cells of the arrangement).

- We show that

$$
\left|\left\{\sigma_{\mathbf{a}^{\mathbf{u}}} \mid \mathbf{u} \in \mathbb{B}_{+}^{d}(0,1)\right\}\right| \leq \Phi_{d}(n(n-1) / 2)=O(n)^{2 d}
$$

Number of distinct permutations

Fact

Any arrangement of $m d$-dimensional hyperplanes partitions \mathbb{R}^{d} into at most $\Phi_{d}(m):=\sum_{i=0}^{d}\binom{m}{i} \leq\left(\frac{e m}{d}\right)^{d}$ maximal connected regions not intersected by any of the hyperplanes (called cells of the arrangement).

- We show that

$$
\left|\left\{\sigma_{\mathbf{a}^{u}} \mid \mathbf{u} \in \mathbb{B}_{+}^{d}(0,1)\right\}\right| \leq \Phi_{d}(n(n-1) / 2)=O(n)^{2 d}
$$

- Write $A=\left[\mathbf{a}^{1}, \ldots, \mathbf{a}^{n}\right]$ where $\mathbf{a}^{j} \in \mathbb{R}_{+}^{d}$ is the j-th column of A
- Then $w_{j}=w_{j}^{\mathbf{u}}=\left(\mathbf{a}^{j}\right)^{\top} \mathbf{u}+b_{j}$

Number of distinct permutations

Fact

Any arrangement of $m d$-dimensional hyperplanes partitions \mathbb{R}^{d} into at most $\Phi_{d}(m):=\sum_{i=0}^{d}\binom{m}{i} \leq\left(\frac{e m}{d}\right)^{d}$ maximal connected regions not intersected by any of the hyperplanes (called cells of the arrangement).

- We show that

$$
\left|\left\{\sigma_{\mathbf{a}^{u}} \mid \mathbf{u} \in \mathbb{B}_{+}^{d}(0,1)\right\}\right| \leq \Phi_{d}(n(n-1) / 2)=O(n)^{2 d}
$$

- Write $A=\left[\mathbf{a}^{1}, \ldots, \mathbf{a}^{n}\right]$ where $\mathbf{a}^{j} \in \mathbb{R}_{+}^{d}$ is the j-th column of A
- Then $w_{j}=w_{j}^{\mathbf{u}}=\left(\mathbf{a}^{j}\right)^{\top} \mathbf{u}+b_{j}$
- The system of inequalities $w_{j} \leq w_{j^{\prime}}$ for $j, j^{\prime} \in[n]$ (considering \mathbf{u} as a variable in \mathbb{R}^{d}) defines a hyperplane arrangement:

$$
\left(\mathbf{a}^{j}-\mathbf{a}^{j^{\prime}}\right)^{\top} \mathbf{u} \leq b_{j^{\prime}}-b_{j}, \quad \text { for } j \neq j^{\prime} \in[n]
$$

Chance-constraint multi-dimensional knapsack

- Given vectors $\mathbf{a}^{i}=\left(a_{i j} \mid j \in[n]\right)$ drawn from a multivariate normal distribution with mean $\overline{\mathbf{a}}^{i} \in \mathbb{R}_{+}^{n}$ and covariance matrix $\Sigma^{i} \succeq 0$, i.e., $\mathbf{a}^{i} \sim N\left(\overline{\mathbf{a}}^{i}, \Sigma^{i}\right):$

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(\mathbf{a}^{i}\right)^{\top} \mathbf{x} \leq t_{i}\right] \geq \alpha_{i}, \quad \text { for } i \in[r], \\
& \quad \mathbf{x} \in\{0,1\}^{n}
\end{aligned}
$$

- We can show that $|\mathcal{G}|=O(n)^{2 d+1} r|\mathcal{F}|$, where $d:=\max _{i} d_{i}$
- Consequently, if $d=O(1)$, then all maximal feasible vectors can be enumerated in quasi-polynomial time

Enumerating minimal feasible solutions

- Consider the covering inequality

$$
\begin{aligned}
& g(\mathbf{x}):=\|D \mathbf{x}\|+\mathbf{b}^{\top} \mathbf{x} \geq t \\
& \quad \mathbf{x} \in\{0,1\}^{n}
\end{aligned}
$$

where $D \in \mathbb{R}_{+}^{n \times n}$ is a diagonal matrix (independent case)

- \mathcal{F} : set of maximal infeasible vectors
- \mathcal{G} : set of minimal feasible vectors
- Previous argument does not work
- and even if it works, it would give $|\mathcal{F}|=O(n)^{2 n+1}|\mathcal{G}|$

Enumerating minimal feasible solutions

- Consider the covering inequality

$$
\begin{aligned}
& g(\mathbf{x}):=\|D \mathbf{x}\|+\mathbf{b}^{\top} \mathbf{x} \geq t \\
& \quad \mathbf{x} \in\{0,1\}^{n}
\end{aligned}
$$

where $D \in \mathbb{R}_{+}^{n \times n}$ is a diagonal matrix (independent case)

- \mathcal{F} : set of maximal infeasible vectors
- \mathcal{G} : set of minimal feasible vectors
- Previous argument does not work
- and even if it works, it would give $|\mathcal{F}|=O(n)^{2 n+1}|\mathcal{G}|$
- Better bound via supermodularity: $|\mathcal{F}| \leq|\mathcal{G}|^{o\left(\log \frac{t}{\tau}\right)}$:

Enumerating minimal feasible solutions

- Better bound via supermodularity: $|\mathcal{F}| \leq|\mathcal{G}|^{o\left(\log \frac{t}{\tau}\right)}$:
- $f(\mathbf{x}):=R-\|D(\mathbf{1}-\mathbf{x})\|-\mathbf{b}^{\top}(\mathbf{1}-\mathbf{x}) \leq R-t$

Enumerating minimal feasible solutions

- Better bound via supermodularity: $|\mathcal{F}| \leq|\mathcal{G}|^{o\left(\log \frac{t}{\tau}\right)}$:
- $f(\mathbf{x}):=R-\|D(\mathbf{1}-\mathbf{x})\|-\mathbf{b}^{\top}(\mathbf{1}-\mathbf{x}) \leq R-t$
- Range: $R:=\sqrt{n} D_{\max }+n b_{\max }$, where $D_{\max }:=\max _{j} d_{j j}$ and $b_{\text {max }}:=\max _{j} b_{j}$
- Traction:

$$
\tau:=\min _{\substack{j \in[n] \times \in\left\{\{, 1\}, x_{j}=0 \\ f\left(\mathbf{x}+\mathbf{1}^{j}\right)>f(\mathbf{x})\right.}} f\left(\mathbf{x}+\mathbf{1}^{j}\right)-f(\mathbf{x}) \geq \min \left\{\frac{D_{\min }^{2}}{2 \sqrt{n} D_{\max }}, b_{\min }\right\}
$$

where $D_{\text {min }}=\min \left\{d_{j j} \mid d_{j j}>0\right\}, b_{\text {min }}=\min \left\{b_{j} \mid b_{j}>0\right\}$

Enumerating minimal feasible solutions

- Better bound via supermodularity: $|\mathcal{F}| \leq|\mathcal{G}|^{o\left(\log \frac{t}{\tau}\right)}$:
- $f(\mathbf{x}):=R-\|D(\mathbf{1}-\mathbf{x})\|-\mathbf{b}^{\top}(\mathbf{1}-\mathbf{x}) \leq R-t$
- Range: $R:=\sqrt{n} D_{\max }+n b_{\max }$, where $D_{\max }:=\max _{j} d_{j j}$ and

$$
b_{\max }:=\max _{j} b_{j}
$$

- Traction:

$$
\tau:=\min _{\substack{j \in[\mid] \mid x \in\{0,1\}, x_{j}=0 \\ f\left(\mathbf{x}+\mathbf{1}^{j}\right)>f(\mathbf{x})}} f\left(\mathbf{x}+\mathbf{1}^{j}\right)-f(\mathbf{x}) \geq \min \left\{\frac{D_{\min }^{2}}{2 \sqrt{n} D_{\max }}, b_{\min }\right\}
$$

where $D_{\text {min }}=\min \left\{d_{j j} \mid d_{j j}>0\right\}, b_{\text {min }}=\min \left\{b_{j} \mid b_{j}>0\right\}$

- Based on extending the result in [Boros et al. (2002)] for integer-valued supermodular functions
- Consequently, if the entries of D and b are polynomial in n, we get a quasi-polynomial time enumeration algorithm

Some open questions

- Can we show $|\mathcal{G}|=\operatorname{poly}(n, d,|\mathcal{F}|)$ (for the SOC inequality)?
- in comparison to $|\mathcal{G}|=O(n)^{2 d+1}|\mathcal{F}|$
- Is there a polynomial time enumeration algorithm for a single chance-constraint knapsack inequality?
- in comparison to a quasi-polynomial time algorithm

Thank you

