On the size of irredundant propagation complete CNF formulas

Petr Savický Institute of Computer Science, Czech Academy of Sciences

Liblice, September 2023

イロト 不得 とくき とくきとう き

1/14

Contents

Preliminary remarks:

- main result: on irredundant propagation complete CNF formulas
- more general context: arbitrary CNF formulas which are irredundant with respect to unit clause propagation (ucp)

Contents:

- 1. ucp-equivalence and ucp-irredundancy of CNF formulas
- 2. the ratio of the size of a ucp-irredundant and a smallest ucp-equivalent formula
- 3. an **upper bound** n^2 on this ratio
- 4. a lower bound $\Omega(n/\ln n)$ on this ratio (main result)
- 5. some parts of the proof (using known results on covering numbers for uniform hypergraphs)

Ucp-equivalence

In some contexts, we need to distinguish CNF formulas according to the strength of **unit clause propagation (ucp)** on them (learned clauses in a SAT solver).

Definition

Formulas φ_1 and φ_2 are **ucp-equivalent**, if for every partial assignment α , unit propagation derives either the same consistent set of literals from $\varphi_1 \wedge \alpha$ and $\varphi_2 \wedge \alpha$ or a contradiction in both cases.

ucp-equivalent \Rightarrow **equivalent** (α can be a total assignment).

algorithmic problem: For a given formula, find a ucp-equivalent formula as small as possible.

a base-line: consider irredundant formulas

Irredundancy w.r.t. unit clause propagation

Bordeaux and Marques-Silva, 2012:

minimal PC formula using the notion of absorbed clause.

a straightforward generalization:

Definition

Formula φ is **ucp-irredundant** if (equivalent conditions):

- none of the clauses $C \in \varphi$ is absorbed by $\varphi \setminus \{C\}$ or
- ▶ for every $C \in \varphi$, φ and $\varphi \setminus \{C\}$ are not ucp-equivalent.

The notions are efficient in the following sense:

- test of absorbed clause is in poly-time
- ucp-equivalence can be tested in poly-time
- any formula can be made ucp-irredundant in poly-time

Dual-rail encoding (a remark)

For any CNF formula φ , the Horn formula $DR(\varphi)$ represents unit clause propagation on φ .

Idea: for every literal / introduce variable [[1]] (1 is derived)

If $\varphi = C_1 \land \ldots \land C_m$ on variables x_1, \ldots, x_n , then

$$\mathrm{DR}(\varphi) = \mathrm{DR}(C_1) \wedge \ldots \wedge \mathrm{DR}(C_m) \wedge \bigwedge_{i=1}^n (\neg \llbracket x_i \rrbracket \vee \neg \llbracket \neg x_i \rrbracket)$$

where for a clause $C = I_1 \vee \ldots \vee I_k$,

$$\mathrm{DR}(C) = \bigwedge_{i=1}^{k} \left(\bigwedge_{j \neq i} \llbracket \neg l_j \rrbracket \rightarrow \llbracket l_i \rrbracket \right)$$

<ロト <回 > < 臣 > < 臣 > 王 の Q () 5/14

The size of ucp-irredundant formulas

Formulas φ_1 and φ_2 are **ucp-equivalent** if and only if the Horn formulas $DR(\varphi_1)$ and $DR(\varphi_2)$ are **equivalent**.

An **irredundant Horn formula** is at most n times larger than a minimal equivalent formula.

 \Rightarrow an upper bound $2n^2$ for **ucp-irredundant formulas**

Proposition

Let φ be ucp-irredundant and let φ^* be a minimal formula ucp-equivalent to φ , both of n variables, then

$$|\varphi| \le n^2 |\varphi^*|$$

 $\|\varphi\| \le n^2 \|\varphi^*\|$

A proof of the upper bound

Assume, φ and φ^* are ucp-equivalent and ucp-irredundant.

For every $I \in C \in \varphi^*$, unit clause propagation derives Ifrom $\varphi^* \wedge \operatorname{neg}(C \setminus I)$ and, hence, also from $\varphi \wedge \operatorname{neg}(C \setminus I)$.

Let φ' be the subset φ needed for this. Clearly, $|\varphi'| \leq n \|\varphi^*\|$.

Using the assumption, we obtain $\varphi' = \varphi$, so we have

 $|\varphi| \leq n \|\varphi^*\|$

and, hence,

$$\begin{aligned} |\varphi| &\le n \|\varphi^*\| \le n^2 |\varphi^*| \\ \|\varphi\| &\le n |\varphi| \le n^2 \|\varphi^*\| \end{aligned}$$

Question: Can the upper bounds be improved and how much?

The result

Theorem

For every large enough n, there is a ucp-irredundant formula φ^ℓ of n variables, such that

 $|\varphi^{\ell}| = \Omega(n/\ln n)|\varphi^{*}|$ $\|\varphi^{\ell}\| = \Omega(n/\ln n)\|\varphi^{*}\|$

where φ^* is a minimal formula ucp-equivalent to φ^{ℓ} .

The proof uses PC formulas

A formula φ is **propagation complete (PC)**, if it is ucp-equivalent to the set of all its prime implicates.

Formulas φ^{ℓ} and φ^* will be representations of a specific symmetric definite Horn function.

A symmetric definite Horn function

Let n and k = n/2 + O(1) be fixed, let X be a set of n variables.

Let $\Psi_{n,k}$ be the set of all definite Horn clauses of length k+1 over the *n* variables *X*.

 $\Psi_{n,k}$ is the set of **all prime implicates** of a symmetric definite Horn function which is also a key-Horn function.

Goal: Find prime ucp-irredundant formulas φ^{ℓ} (large) and φ^{*} (small) which are ucp-equivalent to $\Psi_{n,k}$.

 φ^ℓ and φ^* will be hypergraph formulas defined as

$$\theta(H) = \{ \operatorname{neg}(e \setminus \{x\}) \cup \{x\} \mid e \in H \}$$

where H is a suitable (k + 1)-uniform hypergraph.

Hypergraph formulas ucp-equivalent to $\Psi_{n,k}$

For a (k + 1)-uniform hypergraph H on X and a set $A \subseteq X$, |A| = k - 1, consider the graph on $X \setminus A$

$$G(H, A) = \{\{x_i, x_j\} \mid A \cup \{x_i, x_j\} \in H\}$$

Definition

A (k + 1)-uniform hypergraph H has connected restrictions, if for all $A \subseteq X$, |A| = k - 1, the undirected graph G(H, A) is connected on $X \setminus A$.

Theorem

 $\theta(H)$ is ucp-equivalent to $\Psi_{n,k}$ if and only if H has connected restrictions.

A large irredundant formula

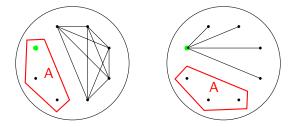
Let
$$arphi^\ell= heta({\mathcal H})$$
, where ${\mathcal H}=\{B\subseteq X\mid x_1\in B, |B|=k+1\}.$

Lemma

 φ^{ℓ} is ucp-irredundant and ucp-equivalent to $\Psi_{n,k}$.

Proof:

G(H, A) is connected for every $A \Rightarrow H$ has connected restrictions.



By case inspection, we get that φ is ucp-irredundant.

Covering designs

Construction of a small hypergraph H with connected restrictions (used for φ^*) uses known bounds on the size of covering designs.

A covering design with parameters (n, k + 1, k) is any system of (k + 1)-sets of an *n*-set covering every *k*-set.

The size of a smallest such system will be denoted C(n, k + 1, k).

By result [Erdős, Spencer, 1974] or [Sidorenko, 1997], we have

$$\frac{1}{k+1}\binom{n}{k} \le C(n,k+1,k) \le \frac{O(\ln n)}{k+1}\binom{n}{k}$$

Size of a hypergraph with connected restrictions

Theorem

For a large enough n and k = n/2 + O(1), there is a hypergraph H^* with connected restrictions of size at most 6C(n, k+1, k).

Sketch of proof:

Let H_0 be a covering design with parameters (n, k + 1, k).

For every set A, |A| = k - 1, the graph $G(H_0, A)$ has non-zero degree for all vertices (variables $X \setminus A$).

Union of 3 random permutations \Rightarrow a connected graph with high probability.

Using this for all sets A, |A| = k - 1 requires to use 5 random permutations and some additional hyperedges, so we get

$$|H^*| \le (5 + o(1))|H_0| \le 6|H_0| = 6C(n, k + 1, k)$$

Summary of the bounds

Formula $\theta(H^*)$ is ucp-equivalent to $\Psi_{n,k}$ and has size at most 6(k+1)C(n, k+1, k).

Theorem

For every n and k = n/2 + O(1), there is a ucp-irredundant formula φ^{ℓ} of size

$$|\varphi^{\ell}| = (k+1)\binom{n-1}{k} = \Theta(n)\binom{n}{k}$$

and such that a smallest ucp-equivalent formula φ^* has size

$$|\varphi^*| \leq 6(k+1)C(n,k+1,k) = O(\ln n)\binom{n}{k}$$

In particular, $|\varphi^{\ell}| = \Omega(n/\ln n)|\varphi^*|$.

Thank you for attention.