Matroid Horn functions

Kristóf Bérczi

Joint work with Endre Boros and Kazuhisa Makino

MTA-ELTE Matroid Optimization Research Group
Department of Operations Research, Eötvös Loránd University
Boolean Seminar Liblice
September 26, 2023

Long story short...

A long time ago in a city far, far away... (May 2018, Budapest)

Long story short...

A long time ago in a city far, far away... (May 2018, Budapest)

Let's associate Horn functions to matroids!

Long story short...

A long time ago in a city far, far away... (May 2018, Budapest)

Let's associate Horn functions to matroids!

Good idea, there are a lot of nice questions here!

Long story short...

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Long story short...

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away... (January 2020, Kyoto)

Long story short...

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away... (January 2020, Kyoto)

Here is a write-up of what we have so far.

Long story short...

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away... (January 2020, Kyoto)

Here is a write-up of what we have so far.

Sure, but we could also consider hypergraphs.

Long story short...

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away... (January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

Long story short...

A long time ago in a city far, far away... (May 2018, Budapest)

A few waves of COVID later... (May 2022, Kyoto)
Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away... (January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

Long story short...

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!
A few waves of COVID later...
(May 2022, Kyoto)

New observations on implicate duality!
Yay, let's have a beer!

Not so long ago, but even further away... (January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

Long story short...

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away...

A few waves of COVID later... (May 2022, Kyoto)

 New observations on implicate duality!

Great, we should wrap up everything. (January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

Long story short...

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away...
A few waves of COVID later... (May 2022, Kyoto)

Yay, let's have a beer! (January 2020, Kyoto)

Go ahead, I'm in a different city :(

Yay, let's have a beer!

Yay, let's have a beer!

Long story short...

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away...
A few waves of COVID later...
(May 2022, Kyoto)

Yay, let's have a beer! (January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

Go ahead, I'm in a different city :(

Finally...
(January 2023, Kyoto)

Long story short...

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

A few waves of COVID later...
(May 2022, Kyoto)

Yay, let's have a beer!

Go ahead, I'm in a different city :(

Finally...
(January 2023, Kyoto)

Long story short...

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

A few waves of COVID later...
(May 2022, Kyoto)

Yay, let's have a beer!

Go ahead, I'm in a different city :(

Finally...
(January 2023, Kyoto)

Outline

Hypergraph Horn functions
Hypergraphs, definite Horn functions
Circular CNFs
Matroids
Circuits, closed sets, hyperplanes
Matroid Horn functions
Translation between matroidal and Boolean terminology
Characterizations
Minimum representations
Objectives
Binary matroids
Uniform matroids

Hypergraph Horn functions

Hypergraphs

Given a finite set V, a hypergraph is a family $\mathcal{H} \subseteq 2^{V}$. The hypergraph is Sperner if $H_{1} \not \subset H_{2}$ for any $H_{1}, H_{2} \in \mathcal{H}$.

Hypergraphs

Given a finite set V, a hypergraph is a family $\mathcal{H} \subseteq 2^{V}$. The hypergraph is Sperner if $H_{1} \not \subset H_{2}$ for any $H_{1}, H_{2} \in \mathcal{H}$.

The complementary family of \mathcal{H} is $\mathcal{H}^{c}=\{V \backslash H \mid H \in \mathcal{H}\}$. Remark: $\left(\mathcal{H}^{c}\right)^{c}=\mathcal{H}$.

Hypergraphs

Given a finite set V, a hypergraph is a family $\mathcal{H} \subseteq 2^{V}$. The hypergraph is Sperner if $H_{1} \not \subset H_{2}$ for any $H_{1}, H_{2} \in \mathcal{H}$.

The complementary family of \mathcal{H} is $\mathcal{H}^{c}=\{V \backslash H \mid H \in \mathcal{H}\}$.
Remark: $\left(\mathcal{H}^{c}\right)^{c}=\mathcal{H}$.
$T \subseteq V$ is a transversal of \mathcal{H} if $T \cap H \neq \emptyset$ for every $H \in \mathcal{H}$. The family of minimal transversals of \mathcal{H} is denoted by \mathcal{H}^{d}.

Remark: For Sperner hypergraphs, $\left(\mathcal{H}^{d}\right)^{d}=\mathcal{H}$.

Hypergraphs

Given a finite set V, a hypergraph is a family $\mathcal{H} \subseteq 2^{V}$. The hypergraph is Sperner if $H_{1} \not \subset H_{2}$ for any $H_{1}, H_{2} \in \mathcal{H}$.

The complementary family of \mathcal{H} is $\mathcal{H}^{c}=\{V \backslash H \mid H \in \mathcal{H}\}$.
Remark: $\left(\mathcal{H}^{c}\right)^{c}=\mathcal{H}$.
$T \subseteq V$ is a transversal of \mathcal{H} if $T \cap H \neq \emptyset$ for every $H \in \mathcal{H}$. The family of minimal transversals of \mathcal{H} is denoted by \mathcal{H}^{d}.

Remark: For Sperner hypergraphs, $\left(\mathcal{H}^{d}\right)^{d}=\mathcal{H}$.
The intersection closure of \mathcal{H} is

$$
\mathcal{H}^{\cap}=\left\{\bigcap_{F \in \mathcal{F}} F \mid \mathcal{F} \subseteq \mathcal{H}\right\} .
$$

True sets, keys, and closure

For a definite Horn function $h: 2^{V} \rightarrow\{0,1\}, \mathcal{T}(h)$ is the family of true sets of h. For $Z \subseteq V, \mathbb{T}_{h}(Z)$ is the unique minimal true set containing Z. The set is closed if $\mathbb{T}_{h}(Z)=Z$.

Remark: $\mathbb{T}_{h}(Z)$ is the so-called forward-chaining closure of Z.

True sets, keys, and closure

For a definite Horn function $h: 2^{V} \rightarrow\{0,1\}, \mathcal{T}(h)$ is the family of true sets of h. For $Z \subseteq V, \mathbb{T}_{h}(Z)$ is the unique minimal true set containing Z. The set is closed if $\mathbb{T}_{h}(Z)=Z$.

Remark: $\mathbb{T}_{h}(Z)$ is the so-called forward-chaining closure of Z.
$K \subseteq V$ is a key of h if $\mathbb{T}_{h}(K)=V$. The family of minimal keys of h is

$$
\mathcal{K}(h)=\left\{K \subseteq V \mid \mathbb{T}_{h}(K)=V \text { and } \mathbb{T}_{h}\left(K^{\prime}\right) \neq V \text { for all } K^{\prime} \subsetneq K\right\} .
$$

True sets, keys, and closure

For a definite Horn function $h: 2^{V} \rightarrow\{0,1\}, \mathcal{T}(h)$ is the family of true sets of h. For $Z \subseteq V, \mathbb{T}_{h}(Z)$ is the unique minimal true set containing Z. The set is closed if $\mathbb{T}_{h}(Z)=Z$.

Remark: $\mathbb{T}_{h}(Z)$ is the so-called forward-chaining closure of Z.
$K \subseteq V$ is a key of h if $\mathbb{T}_{h}(K)=V$. The family of minimal keys of h is

$$
\mathcal{K}(h)=\left\{K \subseteq V \mid \mathbb{T}_{h}(K)=V \text { and } \mathbb{T}_{h}\left(K^{\prime}\right) \neq V \text { for all } K^{\prime} \subsetneq K\right\} .
$$

The family of maximal nontrivial true sets of h is

$$
\mathcal{M}(h)=\left\{T \subsetneq V \mid h(T)=1 \text { and } h\left(T^{\prime}\right)=0 \text { for all } T \subsetneq T^{\prime} \subsetneq V\right\} .
$$

Circular CNFs

An implicate $A \rightarrow v$ of a Boolean function $f: 2^{V} \rightarrow\{0,1\}$ is circular if $((A+v)-u) \rightarrow u$ is also an implicate for every $u \in A$.

Circular CNFs

An implicate $A \rightarrow v$ of a Boolean function $f: 2^{V} \rightarrow\{0,1\}$ is circular if $((A+v)-u) \rightarrow u$ is also an implicate for every $u \in A$.

For a hypergraph $\mathcal{H} \subseteq 2^{V}$, the circular CNF associated to \mathcal{H} is

$$
\Phi_{\mathcal{H}}=\bigwedge_{H \in \mathcal{H}}\left(\bigwedge_{v \in H}((H-v) \rightarrow v)\right) .
$$

Circular CNFs

An implicate $A \rightarrow v$ of a Boolean function $f: 2^{V} \rightarrow\{0,1\}$ is circular if $((A+v)-u) \rightarrow u$ is also an implicate for every $u \in A$.

For a hypergraph $\mathcal{H} \subseteq 2^{V}$, the circular CNF associated to \mathcal{H} is

$$
\Phi_{\mathcal{H}}=\bigwedge_{H \in \mathcal{H}}\left(\bigwedge_{v \in H}((H-v) \rightarrow v)\right) .
$$

A definite Horn function $h: 2^{V} \rightarrow\{0,1\}$ is hypergraph Horn if $h=\Phi_{\mathcal{H}}$ for some hypergraph $\mathcal{H} \subseteq 2^{V}$.

Remarks:

- $\Phi_{\mathcal{H}}=\Phi_{\mathcal{H}^{\prime}}$ might hold even if \mathcal{H} is Sperner while \mathcal{H}^{\prime} is not.
- $\Phi_{\mathcal{H}}$ might have non-circular implicates.

Circular CNFs

An implicate $A \rightarrow v$ of a Boolean function $f: 2^{V} \rightarrow\{0,1\}$ is circular if $((A+v)-u) \rightarrow u$ is also an implicate for every $u \in A$.

For a hypergraph $\mathcal{H} \subseteq 2^{V}$, the circular CNF associated to \mathcal{H} is

$$
\Phi_{\mathcal{H}}=\bigwedge_{H \in \mathcal{H}}\left(\bigwedge_{v \in H}((H-v) \rightarrow v)\right) .
$$

A definite Horn function $h: 2^{V} \rightarrow\{0,1\}$ is hypergraph Horn if $h=\Phi_{\mathcal{H}}$ for some hypergraph $\mathcal{H} \subseteq 2^{V}$.

Remarks:

- $\Phi_{\mathcal{H}}=\Phi_{\mathcal{H}^{\prime}}$ might hold even if \mathcal{H} is Sperner while \mathcal{H}^{\prime} is not.
- $\Phi_{\mathcal{H}}$ might have non-circular implicates.
\Rightarrow Stay tuned for Endre's talk!

Matroids

Matroids

Given a ground set V, a matroid $\mathbb{M}=(V, \mathcal{I})$ is a pair where $\mathcal{I} \subseteq 2^{V}$ satisfies the independence axioms:
(I1) $\emptyset \in \mathcal{I}$,
(I2) $X \subseteq Y \in \mathcal{I} \Rightarrow X \in \mathcal{I}$,
(I3) $X, Y \in \mathcal{I},|X|<|Y| \Rightarrow \exists e \in X-Y$ s.t. $X+e \in \mathcal{I}$.

Introduced by Hassler Whitney (1935) and by Takeo Nakasawa (1935).

Examples:

2	0	3	1	1
3	0	3	0	3
1	1	2	0	2
0	2	3	1	1
0	2	4	2	0

Graphic matroid
Linear matroid

Circuits, closed sets, hyperplanes

Maximal independent sets are called bases, minimal dependent sets are called circuits.

Remark: $I \subseteq V$ is independent $\Leftrightarrow C \nsubseteq I$ for every $C \in \mathcal{C}$.

Circuits, closed sets, hyperplanes

Maximal independent sets are called bases, minimal dependent sets are called circuits.

Remark: $I \subseteq V$ is independent $\Leftrightarrow C \nsubseteq I$ for every $C \in \mathcal{C}$.
$\mathcal{C} \subseteq 2^{V}$ is the family of circuits of a matroid if and only if
(C1) $\emptyset \notin \mathcal{C}$.
(C2) If $C_{1}, C_{2} \in \mathcal{C}$, then $C_{1} \not \subset C_{2}$.
(C3) If $C_{1}, C_{2} \in \mathcal{C}$ are distinct and $u \in C_{1} \cap C_{2}$, then there exists $C_{3} \in \mathcal{C}$ such that $C_{3} \subseteq\left(C_{1} \cup C_{2}\right)-u$.

Circuits, closed sets, hyperplanes

Maximal independent sets are called bases, minimal dependent sets are called circuits.

Remark: $I \subseteq V$ is independent $\Leftrightarrow C \nsubseteq I$ for every $C \in \mathcal{C}$.
$\mathcal{C} \subseteq 2^{V}$ is the family of circuits of a matroid if and only if
(C1) $\emptyset \notin \mathcal{C}$.
(C2) If $C_{1}, C_{2} \in \mathcal{C}$, then $C_{1} \not \subset C_{2}$.
(C3) If $C_{1}, C_{2} \in \mathcal{C}$ are distinct and $u \in C_{1} \cap C_{2}$, then there exists $C_{3} \in \mathcal{C}$ such that $C_{3} \subseteq\left(C_{1} \cup C_{2}\right)-u$.

The maximum size of an independent set in X is the rank $r(X)$ of X.

Circuits, closed sets, hyperplanes

Maximal independent sets are called bases, minimal dependent sets are called circuits.

Remark: $I \subseteq V$ is independent $\Leftrightarrow C \nsubseteq I$ for every $C \in \mathcal{C}$.
$\mathcal{C} \subseteq 2^{V}$ is the family of circuits of a matroid if and only if
(C1) $\emptyset \notin \mathcal{C}$.
(C2) If $C_{1}, C_{2} \in \mathcal{C}$, then $C_{1} \not \subset C_{2}$.
(C3) If $C_{1}, C_{2} \in \mathcal{C}$ are distinct and $u \in C_{1} \cap C_{2}$, then there exists $C_{3} \in \mathcal{C}$ such that $C_{3} \subseteq\left(C_{1} \cup C_{2}\right)-u$.

The maximum size of an independent set in X is the rank $r(X)$ of X.
A set X is closed if $r(X+e)>r(X)$ for every $V-X$.

Circuits, closed sets, hyperplanes

Maximal independent sets are called bases, minimal dependent sets are called circuits.

Remark: $I \subseteq V$ is independent $\Leftrightarrow C \nsubseteq I$ for every $C \in \mathcal{C}$.
$\mathcal{C} \subseteq 2^{V}$ is the family of circuits of a matroid if and only if
(C1) $\emptyset \notin \mathcal{C}$.
(C2) If $C_{1}, C_{2} \in \mathcal{C}$, then $C_{1} \not \subset C_{2}$.
(C3) If $C_{1}, C_{2} \in \mathcal{C}$ are distinct and $u \in C_{1} \cap C_{2}$, then there exists $C_{3} \in \mathcal{C}$ such that $C_{3} \subseteq\left(C_{1} \cup C_{2}\right)-u$.

The maximum size of an independent set in X is the rank $r(X)$ of X.
A set X is closed if $r(X+e)>r(X)$ for every $V-X$.
A hyperplane is a closed set of rank $r(V)-1$.

Matroid Horn functions

A definite Horn function $h: 2^{V} \rightarrow\{0,1\}$ is matroidal or matroid Horn if $h=\Phi_{\mathcal{C}}$ for the family of circuits \mathcal{C} of a matroid.

Matroid Horn functions

A definite Horn function $h: 2^{V} \rightarrow\{0,1\}$ is matroidal or matroid Horn if $h=\Phi_{\mathcal{C}}$ for the family of circuits \mathcal{C} of a matroid.

Goal: Study the properties of matroid Horn functions.
Q1: Characterization of matroid Horn functions?
Q2: Connection between Boolean and matroid terminology?
Q3: Minimum representation of matroid Horn functions?
Q4: Complexity of recognition problem?

Matroid Horn functions

A definite Horn function $h: 2^{V} \rightarrow\{0,1\}$ is matroidal or matroid Horn if $h=\Phi_{\mathcal{C}}$ for the family of circuits \mathcal{C} of a matroid.

Goal: Study the properties of matroid Horn functions.
Q1: Characterization of matroid Horn functions?
Q2: Connection between Boolean and matroid terminology?
Q3: Minimum representation of matroid Horn functions?
Q4: Complexity of recognition problem?
For a matroid Horn function h, a CNF representation $h=\Phi_{\mathcal{C}}$ is canonical if \mathcal{C} satisfies the circuit axioms (C1)-(C3).

Matroid Horn functions

A definite Horn function $h: 2^{V} \rightarrow\{0,1\}$ is matroidal or matroid Horn if $h=\Phi_{\mathcal{C}}$ for the family of circuits \mathcal{C} of a matroid.

Goal: Study the properties of matroid Horn functions.
Q1: Characterization of matroid Horn functions?
Q2: Connection between Boolean and matroid terminology?
Q3: Minimum representation of matroid Horn functions?
Q4: Complexity of recognition problem?
For a matroid Horn function h, a CNF representation $h=\Phi_{\mathcal{C}}$ is canonical if \mathcal{C} satisfies the circuit axioms (C1)-(C3).
For a Boolean function $f: 2^{V} \rightarrow\{0,1\}$, the unique CNF representation that contains all prime implicates of f is the complete CNF of f.

Boolean vs. matroid terminology

Lemma

Let \mathcal{C} be the family of circuits of a matroid \mathbb{M}, and let $h=\Phi_{\mathcal{C}}$. Then we have $\mathbb{T}_{h}(X)=\mathrm{cl}_{\mathbb{M}}(X)$ for all $X \subseteq V$.

Boolean vs. matroid terminology

Lemma

Let \mathcal{C} be the family of circuits of a matroid \mathbb{M}, and let $h=\Phi_{\mathcal{C}}$. Then we have $\mathbb{T}_{h}(X)=\mathrm{cl}_{\mathbb{M}}(X)$ for all $X \subseteq V$.

Matroid \mathbb{M} with circuit family \mathcal{C}	Matroid Horn function h represented by $\Phi_{\mathcal{C}}$
Bases of \mathbb{M}	Minimal keys of h
Closed sets of \mathbb{M}	True sets of h
Hyperplanes of \mathbb{M}	Maximal nontrivial true sets of h

Characterizations

Characterizations in terms of canonical representations.
B, Boros, Makino, '23
Let $\mathcal{C} \subseteq 2^{V}$ and let $h=\Phi_{\mathcal{C}}$. Then the following are equivalent.
(i) \mathcal{C} satisfies circuit axiom (C3).
(ii) $\mathcal{K}(h)=\mathcal{C}^{d c}$.
(ii) $\mathcal{M}(h)=\mathcal{C}^{d c d c}$.
(iv) $\mathcal{T}(h)=\left(\mathcal{C}^{d c d c}\right)^{n}$.

Characterizations

Characterizations in terms of canonical representations.
B, Boros, Makino, ' 23
Let $\mathcal{C} \subseteq 2^{V}$ and let $h=\Phi_{\mathcal{C}}$. Then the following are equivalent.
(i) \mathcal{C} satisfies circuit axiom (C3).
(ii) $\mathcal{K}(h)=\mathcal{C}^{d c}$.
(ii) $\mathcal{M}(h)=\mathcal{C}^{d c d c}$.
(iv) $\mathcal{T}(h)=\left(\mathcal{C}^{d c d c}\right)^{n}$.

Characterizations in terms of complete CNF.

B, Boros, Makino, '23

For a definite Horn function h, the following are equivalent.
(i) The function h is matroid Horn.
(ii) The complete CNF of h is circular.
(iii) The implicate-dual function h^{i} is matroid Horn.
(iv) The complete CNF of h^{i} is circular.

Minimum representations

Objectives

Given $\mathcal{F} \subseteq 2^{v}$ and $\mathcal{G} \subseteq \mathcal{F}$, let $\langle\mathcal{G}\rangle_{\mathcal{F}}^{1}=\mathcal{G} \cup\left\{X \in \mathcal{F} \mid X=\left(X_{1} \cup X_{2}\right)-v\right.$ for distinct $\left.X_{1}, X_{2} \in \mathcal{G}, v \in X_{1} \cap X_{2}\right\}$.

Objectives

Given $\mathcal{F} \subseteq 2^{V}$ and $\mathcal{G} \subseteq \mathcal{F}$, let $\langle\mathcal{G}\rangle_{\mathcal{F}}^{1}=\mathcal{G} \cup\left\{X \in \mathcal{F} \mid X=\left(X_{1} \cup X_{2}\right)-v\right.$ for distinct $\left.X_{1}, X_{2} \in \mathcal{G}, v \in X_{1} \cap X_{2}\right\}$.

Remarks:

- For $k \geq 2,\langle\mathcal{G}\rangle_{\mathcal{F}}^{k}:=\left\langle\langle\mathcal{G}\rangle_{\mathcal{F}}^{k-1}\right\rangle_{\mathcal{F}}^{1}$.
- If $\langle\mathcal{G}\rangle_{\mathcal{F}}^{k}=\langle\mathcal{G}\rangle_{\mathcal{F}}^{k+1}$, then the final system is denoted by $\langle\mathcal{G}\rangle_{\mathcal{F}}$, and \mathcal{G} is a generator of \mathcal{F} if $\langle\mathcal{G}\rangle_{\mathcal{F}}=\mathcal{F}$.

Objectives

Given $\mathcal{F} \subseteq 2^{V}$ and $\mathcal{G} \subseteq \mathcal{F}$, let $\langle\mathcal{G}\rangle_{\mathcal{F}}^{1}=\mathcal{G} \cup\left\{X \in \mathcal{F} \mid X=\left(X_{1} \cup X_{2}\right)-v\right.$ for distinct $\left.X_{1}, X_{2} \in \mathcal{G}, v \in X_{1} \cap X_{2}\right\}$. Remarks:

- For $k \geq 2,\langle\mathcal{G}\rangle_{\mathcal{F}}^{k}:=\left\langle\langle\mathcal{G}\rangle_{\mathcal{F}}^{k-1}\right\rangle_{\mathcal{F}}^{1}$.
- If $\langle\mathcal{G}\rangle_{\mathcal{F}}^{k}=\langle\mathcal{G}\rangle_{\mathcal{F}}^{k+1}$, then the final system is denoted by $\langle\mathcal{G}\rangle_{\mathcal{F}}$, and \mathcal{G} is a generator of \mathcal{F} if $\langle\mathcal{G}\rangle_{\mathcal{F}}=\mathcal{F}$.

For a matroid $\mathbb{M}=(V, \mathcal{C})$, let $h_{\mathbb{M}}$ be the corresponding matroid Horn function.
For $C \in \mathcal{C}$ and $v \in C$, the clause $(C-v) \rightarrow v$ is called a circuit clause.

Objectives

Given $\mathcal{F} \subseteq 2^{V}$ and $\mathcal{G} \subseteq \mathcal{F}$, let $\langle\mathcal{G}\rangle_{\mathcal{F}}^{1}=\mathcal{G} \cup\left\{X \in \mathcal{F} \mid X=\left(X_{1} \cup X_{2}\right)-v\right.$ for distinct $\left.X_{1}, X_{2} \in \mathcal{G}, v \in X_{1} \cap X_{2}\right\}$. Remarks:

- For $k \geq 2,\langle\mathcal{G}\rangle_{\mathcal{F}}^{k}:=\left\langle\langle\mathcal{G}\rangle_{\mathcal{F}}^{k-1}\right\rangle_{\mathcal{F}}^{1}$.
- If $\langle\mathcal{G}\rangle_{\mathcal{F}}^{k}=\langle\mathcal{G}\rangle_{\mathcal{F}}^{k+1}$, then the final system is denoted by $\langle\mathcal{G}\rangle_{\mathcal{F}}$, and \mathcal{G} is a generator of \mathcal{F} if $\langle\mathcal{G}\rangle_{\mathcal{F}}=\mathcal{F}$.

For a matroid $\mathbb{M}=(V, \mathcal{C})$, let $h_{\mathbb{M}}$ be the corresponding matroid Horn function.
For $C \in \mathcal{C}$ and $v \in C$, the clause $(C-v) \rightarrow v$ is called a circuit clause.
Goal: Find compact representations of $h_{\mathbb{M}}$, and therefore of \mathbb{M}.

Objectives

Given $\mathcal{F} \subseteq 2^{V}$ and $\mathcal{G} \subseteq \mathcal{F}$, let $\langle\mathcal{G}\rangle_{\mathcal{F}}^{1}=\mathcal{G} \cup\left\{X \in \mathcal{F} \mid X=\left(X_{1} \cup X_{2}\right)-v\right.$ for distinct $\left.X_{1}, X_{2} \in \mathcal{G}, v \in X_{1} \cap X_{2}\right\}$.

Remarks:

- For $k \geq 2,\langle\mathcal{G}\rangle_{\mathcal{F}}^{k}:=\left\langle\langle\mathcal{G}\rangle_{\mathcal{F}}^{k-1}\right\rangle_{\mathcal{F}}^{1}$.
- If $\langle\mathcal{G}\rangle_{\mathcal{F}}^{k}=\langle\mathcal{G}\rangle_{\mathcal{F}}^{k+1}$, then the final system is denoted by $\langle\mathcal{G}\rangle_{\mathcal{F}}$, and \mathcal{G} is a generator of \mathcal{F} if $\langle\mathcal{G}\rangle_{\mathcal{F}}=\mathcal{F}$.

For a matroid $\mathbb{M}=(V, \mathcal{C})$, let $h_{\mathbb{M}}$ be the corresponding matroid Horn function.
For $C \in \mathcal{C}$ and $v \in C$, the clause $(C-v) \rightarrow v$ is called a circuit clause.
Goal: Find compact representations of $h_{\mathbb{M}}$, and therefore of \mathbb{M}.
(G) circuit generator: $|\mathbb{M}|_{G}=\min$ cardinality of a generator of \mathcal{C}, [\approx Complexity of \mathcal{C}.]
(C) $\#$ of circuits: $|\mathbb{M}|_{\mathcal{C}}=$ min cardinality of a subsystem $\mathcal{D} \subseteq \mathcal{C}$ s.t. $h_{\mathbb{M}}=\Phi_{\mathcal{D}}$,
(K) \sharp of circuit clauses: $|\mathbb{M}|_{K}=\min \sharp$ of circuit clauses needed to represent $h_{\mathbb{M}}$.
[\approx Minimum number of clasues, but restricted to circuit clauses.]

Binary matroids

Recall: A matroid is binary if it is a linear matroid over \mathbb{Z}_{2}.

Binary matroids

Recall: A matroid is binary if it is a linear matroid over \mathbb{Z}_{2}.

Lemma

Let $\mathbb{M}=(V, \mathcal{C})$ be a simple binary matroid and $X \subseteq V$ be an independent set. Then there is at most one $v \in V$ for which $X+v$ forms a circuit of \mathbb{M}.

Lemma

Let $\mathbb{M}=(V, \mathcal{C})$ be a simple binary matroid. If $C_{1}, C_{2} \in \mathcal{C}$ are such that $\left|C_{1} \backslash C_{2}\right|=1$, then $\left|C_{1}\right|<\left|C_{2}\right|$.

Binary matroids

Recall: A matroid is binary if it is a linear matroid over \mathbb{Z}_{2}.

Lemma

Let $\mathbb{M}=(V, \mathcal{C})$ be a simple binary matroid and $X \subseteq V$ be an independent set. Then there is at most one $v \in V$ for which $X+v$ forms a circuit of \mathbb{M}.

Lemma

Let $\mathbb{M}=(V, \mathcal{C})$ be a simple binary matroid. If $C_{1}, C_{2} \in \mathcal{C}$ are such that $\left|C_{1} \backslash C_{2}\right|=1$, then $\left|C_{1}\right|<\left|C_{2}\right|$.
$\Rightarrow C \in \mathcal{C}$ is chordless if there is no $C^{\prime} \in \mathcal{C}$ with $\left|C^{\prime} \backslash C\right|=1$ and $\left|C^{\prime}\right|<|C|$.

Binary matroids

Recall: A matroid is binary if it is a linear matroid over \mathbb{Z}_{2}.

Lemma

Let $\mathbb{M}=(V, \mathcal{C})$ be a simple binary matroid and $X \subseteq V$ be an independent set. Then there is at most one $v \in V$ for which $X+v$ forms a circuit of \mathbb{M}.

Lemma

Let $\mathbb{M}=(V, \mathcal{C})$ be a simple binary matroid. If $C_{1}, C_{2} \in \mathcal{C}$ are such that $\left|C_{1} \backslash C_{2}\right|=1$, then $\left|C_{1}\right|<\left|C_{2}\right|$.
$\Rightarrow C \in \mathcal{C}$ is chordless if there is no $C^{\prime} \in \mathcal{C}$ with $\left|C^{\prime} \backslash C\right|=1$ and $\left|C^{\prime}\right|<|C|$.

B, Boros, Makino, '23

Let $\mathbb{M}=(V, \mathcal{C})$ be a simple binary matroid. Then the set of chordless cycles is the unique optimal solution with respect to $|\mathbb{M}|_{G},|\mathbb{M}|_{C}$ and $|\mathbb{M}|_{K}$.

Uniform matroids

Recall: A matroid is uniform if $\mathcal{C}=\{C \subseteq V| | C \mid=r+1\}$.

Uniform matroids

Recall: A matroid is uniform if $\mathcal{C}=\{C \subseteq V| | C \mid=r+1\}$.

B, Boros, Makino, '23

Let $\mathbb{M}=(V, \mathcal{C})$ be a rank- r uniform matroid on $n \geq r+1$ elements. Then $|\mathbb{M}|_{G}=n-r$ and $|\mathbb{M}|_{K}=\binom{n}{r}$.

Uniform matroids

Recall: A matroid is uniform if $\mathcal{C}=\{C \subseteq V| | C \mid=r+1\}$.

B, Boros, Makino, '23

Let $\mathbb{M}=(V, \mathcal{C})$ be a rank- r uniform matroid on $n \geq r+1$ elements. Then $|\mathbb{M}|_{G}=n-r$ and $|\mathbb{M}|_{K}=\binom{n}{r}$.

B, Boros, Makino, '23

Let $\mathbb{M}=(V, \mathcal{C})$ be a rank- r uniform matroid on $n \geq r+2$ elements. Then $\binom{n}{r} /\left(r+\frac{1}{2}\right) \leq|\mathbb{M}|_{C} \leq\binom{ n}{r}$.

Sketch of the proof.
Upper bound: For an arbitrary $v \in V$, let $\mathcal{D}=\{X+v|X \subseteq V-v,|X|=r\}$. Then $F_{\Phi_{\mathcal{D}}}(X)=X$ if $|X| \leq r-1$ and $F_{\Phi_{\mathcal{D}}}(X)=V$ otherwise.

Lower bound: If every r-element set X shares 1 token evenly among the sets in \mathcal{D} containing it, then every set in \mathcal{D} receives at most $r+\frac{1}{2}$ tokens in total.

Turán systems

An $(r+1)$-uniform hypergraph $\mathcal{H} \subseteq 2^{V}$ is

- a covering $(n, r+1, r)$-system if every $X \subseteq V$ of size r is contained in at least one hyperedge (min size: $c(n, r+1, r)$),
- a Steiner ($n, r+1, r$)-system if every $X \subseteq V$ of size r is contained in exactly one hyperedge (\min size: $s(n, r+1, r)$),
- an implication ($n, r+1, r$)-system if for every $X \subseteq V$ of size at least r, there exists a hyperedge $H \in \mathcal{H}$ with $|H \backslash X|=1$ (min size: $b(n, r+1, r)$).

Turán systems

An $(r+1)$-uniform hypergraph $\mathcal{H} \subseteq 2^{V}$ is

- a covering $(n, r+1, r)$-system if every $X \subseteq V$ of size r is contained in at least one hyperedge (min size: $c(n, r+1, r)$),
- a Steiner ($n, r+1, r$)-system if every $X \subseteq V$ of size r is contained in exactly one hyperedge (\min size: $s(n, r+1, r)$),
- an implication ($n, r+1, r$)-system if for every $X \subseteq V$ of size at least r, there exists a hyperedge $H \in \mathcal{H}$ with $|H \backslash X|=1$ (min size: $b(n, r+1, r)$).

Then we have $s(n, r+1, r) \leq c(n, r+1, r) \leq b(n, r+1, r)$.

Turán systems

An $(r+1)$-uniform hypergraph $\mathcal{H} \subseteq 2^{V}$ is

- a covering ($n, r+1, r$)-system if every $X \subseteq V$ of size r is contained in at least one hyperedge (min size: $c(n, r+1, r)$),
- a Steiner $(n, r+1, r)$-system if every $X \subseteq V$ of size r is contained in exactly one hyperedge (\min size: $s(n, r+1, r)$),
- an implication ($n, r+1, r$)-system if for every $X \subseteq V$ of size at least r, there exists a hyperedge $H \in \mathcal{H}$ with $|H \backslash X|=1$ (min size: $b(n, r+1, r)$).

Then we have $s(n, r+1, r) \leq c(n, r+1, r) \leq b(n, r+1, r)$.
Horn-logic interpretation: $\mathcal{H} \subseteq 2^{V}$ is

- a covering $(n, r+1, r)$-system if $\mathbb{T}_{\Phi_{\mathcal{H}}}(X) \neq X$ for all $X \subseteq V,|X|=r$,
- a Steiner $(n, r+1, r)$-system if $\left|\mathbb{T}_{\Phi_{\mathcal{H}}}(X)\right|=r+1$ for all $X \subseteq V,|X|=r$,
- an implication ($n, r+1, r$)-system if $\mathbb{T}_{\Phi_{\mathcal{H}}}(X)=V$ for all $X \subseteq V,|X|=r$.

Turán systems

An $(r+1)$-uniform hypergraph $\mathcal{H} \subseteq 2^{V}$ is

- a covering $(n, r+1, r)$-system if every $X \subseteq V$ of size r is contained in at least one hyperedge (min size: $c(n, r+1, r)$),
- a Steiner $(n, r+1, r)$-system if every $X \subseteq V$ of size r is contained in exactly one hyperedge (\min size: $s(n, r+1, r)$),
- an implication ($n, r+1, r$)-system if for every $X \subseteq V$ of size at least r, there exists a hyperedge $H \in \mathcal{H}$ with $|H \backslash X|=1$ (min size: $b(n, r+1, r)$).

Then we have $s(n, r+1, r) \leq c(n, r+1, r) \leq b(n, r+1, r)$.
Horn-logic interpretation: $\mathcal{H} \subseteq 2^{V}$ is

- a covering $(n, r+1, r)$-system if $\mathbb{T}_{\Phi_{\mathcal{H}}}(X) \neq X$ for all $X \subseteq V,|X|=r$,
- a Steiner $(n, r+1, r)$-system if $\left|\mathbb{T}_{\Phi_{\mathcal{H}}}(X)\right|=r+1$ for all $X \subseteq V,|X|=r$,
- an implication ($n, r+1, r$)-system if $\mathbb{T}_{\Phi_{\mathcal{H}}}(X)=V$ for all $X \subseteq V,|X|=r$.
\Rightarrow For a rank- r uniform matroid, $\mathcal{D} \subseteq \mathcal{C}$ satisfy $h_{\mathbb{M}}=\Phi_{\mathcal{D}}$ if and only if \mathcal{D} forms an implication ($n, r+1, r$)-system.

Lower and upper bounds

B, Boros, Makino, '23

Let $\mathbb{M}=(V, \mathcal{C})$ be a rank- r uniform matroid on $n \geq r+1$ elements. Then

$$
c(n, r+1, r) \leq|\mathbb{M}|_{c} \leq 2 \cdot c(n, r+1, r) .
$$

Lower and upper bounds

B, Boros, Makino, '23

Let $\mathbb{M}=(V, \mathcal{C})$ be a rank- r uniform matroid on $n \geq r+1$ elements. Then

$$
c(n, r+1, r) \leq|\mathbb{M}|_{c} \leq 2 \cdot c(n, r+1, r) .
$$

B, Boros, Makino, '23

Let $\mathbb{M}=(V, \mathcal{C})$ be a rank-2 uniform matroid on $n \geq 46$ elements. Then

$$
|\mathbb{M}|_{C}=\frac{n^{2}}{5}+O(n)
$$

Lower and upper bounds

B, Boros, Makino, '23
Let $\mathbb{M}=(V, \mathcal{C})$ be a rank- r uniform matroid on $n \geq r+1$ elements. Then

$$
c(n, r+1, r) \leq|\mathbb{M}|_{c} \leq 2 \cdot c(n, r+1, r)
$$

B, Boros, Makino, '23

Let $\mathbb{M}=(V, \mathcal{C})$ be a rank-2 uniform matroid on $n \geq 46$ elements. Then

$$
|\mathbb{M}|_{C}=\frac{n^{2}}{5}+O(n)
$$

Open problem: Given a rank- r uniform matroid \mathbb{M}, what is the right order of magnitude of $|\mathbb{M}|_{c}=b(n, r+1, r)$?
Open problem: What is the computational complexity of checking if a given a definite Horn function h represented by a definite Horn CNF Ψ is matroid Horn or not?

Thank you for your attention...

K. Bérczi, E. Boros, M. Kazuhisa, Matroid Horn functions, arXiv:2301.06642 (2023).

Kine Bérczi, E. Boros, M. Kazuhisa, Hypergraph Horn functions, arXiv:2301.05461 (2023).
...and happy birthday, Endre!

