Matroid Horn functions

Kristóf Bérczi

Joint work with Endre Boros and Kazuhisa Makino

MTA-ELTE Matroid Optimization Research Group Department of Operations Research, Eötvös Loránd University

Boolean Seminar Liblice September 26, 2023

A long time ago in a city far, far away... (May 2018, Budapest)

A long time ago in a city far, far away... (May 2018, Budapest)

Let's associate Horn functions to matroids!

A long time ago in a city far, far away... (May 2018, Budapest)

Let's associate Horn functions to matroids!

Good idea, there are a lot of nice questions here!

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away... (January 2020, Kyoto)

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away... (January 2020, Kyoto)

Here is a write-up of what we have so far.

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away... (January 2020, Kyoto)

Here is a write-up of what we have so far.

Sure, but we could also consider hypergraphs.

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away... (January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away... (January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

A few waves of COVID later... (May 2022, Kyoto)

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away... (January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

A few waves of COVID later... (May 2022, Kyoto)

New observations on implicate duality!

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away... (January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

A few waves of COVID later... (May 2022, Kyoto)

New observations on implicate duality!

Great, we should wrap up everything.

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away... (January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

A few waves of COVID later... (May 2022, Kyoto)

Yay, let's have a beer!

Go ahead, I'm in a different city :(

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away... (January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

A few waves of COVID |ater... (May 2022, Kyoto)

Yay, let's have a beer!

Go ahead, I'm in a different city :(

Finally... (January 2023, Kyoto)

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away... (January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

A few waves of COVID later... (May 2022, Kyoto)

Yay, let's have a beer!

Go ahead, I'm in a different city :(

Finally...

(January 2023, Kyoto)

We finished with everything!

A long time ago in a city far, far away... (May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away... (January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

A few waves of COVID later... (May 2022, Kyoto)

Yay, let's have a beer!

Go ahead, I'm in a different city :(

Finally...

(January 2023, Kyoto)

Yav, let's have a

beer!

Outline

Hypergraph Horn functions

Hypergraphs, definite Horn functions

Circular CNFs

Matroids

Circuits, closed sets, hyperplanes

Matroid Horn functions

Translation between matroidal and Boolean terminology

Characterizations

Minimum representations

Objectives

Binary matroids

Uniform matroids

Hypergraph Horn functions

The complementary family of \mathcal{H} is $\mathcal{H}^c = \{V \setminus H \mid H \in \mathcal{H}\}.$ **Remark:** $(\mathcal{H}^c)^c = \mathcal{H}.$

The complementary family of \mathcal{H} is $\mathcal{H}^c = \{V \setminus H \mid H \in \mathcal{H}\}.$ **Remark:** $(\mathcal{H}^c)^c = \mathcal{H}.$

 $T \subseteq V$ is a transversal of \mathcal{H} if $T \cap H \neq \emptyset$ for every $H \in \mathcal{H}$. The family of minimal transversals of \mathcal{H} is denoted by \mathcal{H}^d . **Remark:** For Sperner hypergraphs, $(\mathcal{H}^d)^d = \mathcal{H}$.

The complementary family of \mathcal{H} is $\mathcal{H}^c = \{V \setminus H \mid H \in \mathcal{H}\}.$ **Remark:** $(\mathcal{H}^c)^c = \mathcal{H}.$

 $T \subseteq V$ is a transversal of \mathcal{H} if $T \cap H \neq \emptyset$ for every $H \in \mathcal{H}$. The family of minimal transversals of \mathcal{H} is denoted by \mathcal{H}^d .

Remark: For Sperner hypergraphs, $(\mathcal{H}^d)^d = \mathcal{H}$.

The intersection closure of $\mathcal H$ is

$$\mathcal{H}^{\cap} = \left\{ \bigcap_{F \in \mathcal{F}} F \; \middle| \; \mathcal{F} \subseteq \mathcal{H} \right\}.$$

For a definite Horn function $h: 2^V \to \{0, 1\}$, $\mathcal{T}(h)$ is the family of true sets of h. For $Z \subseteq V$, $\mathbb{T}_h(Z)$ is the unique minimal true set containing Z. The set is closed if $\mathbb{T}_h(Z) = Z$. **Remark:** $\mathbb{T}_h(Z)$ is the so-called forward-chaining closure of Z. For a definite Horn function $h: 2^V \to \{0, 1\}$, $\mathcal{T}(h)$ is the family of true sets of h. For $Z \subseteq V$, $\mathbb{T}_h(Z)$ is the unique minimal true set containing Z. The set is closed if $\mathbb{T}_h(Z) = Z$. **Remark:** $\mathbb{T}_h(Z)$ is the so-called forward-chaining closure of Z.

 $K \subseteq V$ is a key of h if $\mathbb{T}_h(K) = V$. The family of minimal keys of h is $\mathcal{K}(h) = \{K \subseteq V \mid \mathbb{T}_h(K) = V \text{ and } \mathbb{T}_h(K') \neq V \text{ for all } K' \subsetneq K\}.$ For a definite Horn function $h: 2^V \to \{0,1\}$, $\mathcal{T}(h)$ is the family of true sets of h. For $Z \subseteq V$, $\mathbb{T}_h(Z)$ is the unique minimal true set containing Z. The set is closed if $\mathbb{T}_h(Z) = Z$. **Remark:** $\mathbb{T}_h(Z)$ is the so-called forward-chaining closure of Z.

$$K \subseteq V$$
 is a key of h if $\mathbb{T}_h(K) = V$. The family of minimal keys of h is
 $\mathcal{K}(h) = \{K \subseteq V \mid \mathbb{T}_h(K) = V \text{ and } \mathbb{T}_h(K') \neq V \text{ for all } K' \subsetneq K\}.$

The family of maximal nontrivial true sets of h is $\mathcal{M}(h) = \{T \subsetneq V \mid h(T) = 1 \text{ and } h(T') = 0 \text{ for all } T \subsetneq T' \subsetneq V\}.$ An implicate $A \to v$ of a Boolean function $f: 2^V \to \{0, 1\}$ is circular if $((A + v) - u) \to u$ is also an implicate for every $u \in A$.

Circular CNFs

An implicate $A \to v$ of a Boolean function $f: 2^V \to \{0, 1\}$ is circular if $((A + v) - u) \to u$ is also an implicate for every $u \in A$.

For a hypergraph $\mathcal{H} \subseteq 2^V$, the circular CNF associated to \mathcal{H} is

$$\Phi_{\mathcal{H}} = \bigwedge_{H \in \mathcal{H}} \left(\bigwedge_{v \in H} \left((H - v) \to v \right) \right).$$

Circular CNFs

An implicate $A \to v$ of a Boolean function $f: 2^V \to \{0, 1\}$ is circular if $((A + v) - u) \to u$ is also an implicate for every $u \in A$.

For a hypergraph $\mathcal{H} \subseteq 2^V$, the circular CNF associated to \mathcal{H} is

$$\Phi_{\mathcal{H}} = \bigwedge_{H \in \mathcal{H}} \left(\bigwedge_{v \in H} \left((H - v) \to v \right) \right).$$

A definite Horn function $h: 2^V \to \{0, 1\}$ is hypergraph Horn if $h = \Phi_H$ for some hypergraph $\mathcal{H} \subseteq 2^V$.

Remarks:

- $\Phi_{\mathcal{H}} = \Phi_{\mathcal{H}'}$ might hold even if \mathcal{H} is Sperner while \mathcal{H}' is not.
- Φ_H might have non-circular implicates.

Circular CNFs

An implicate $A \to v$ of a Boolean function $f: 2^V \to \{0, 1\}$ is circular if $((A + v) - u) \to u$ is also an implicate for every $u \in A$.

For a hypergraph $\mathcal{H} \subseteq 2^V$, the circular CNF associated to \mathcal{H} is

$$\Phi_{\mathcal{H}} = \bigwedge_{H \in \mathcal{H}} \left(\bigwedge_{v \in H} \left((H - v) \to v \right) \right).$$

A definite Horn function $h: 2^V \to \{0, 1\}$ is hypergraph Horn if $h = \Phi_H$ for some hypergraph $\mathcal{H} \subseteq 2^V$.

Remarks:

- $\Phi_{\mathcal{H}} = \Phi_{\mathcal{H}'}$ might hold even if \mathcal{H} is Sperner while \mathcal{H}' is not.
- $\Phi_{\mathcal{H}}$ might have non-circular implicates.

 \Rightarrow Stay tuned for Endre's talk!

Matroids

Matroids

Given a ground set V, a matroid $\mathbb{M} = (V, \mathcal{I})$ is a pair where $\mathcal{I} \subseteq 2^{V}$ satisfies the independence axioms:

(1) $\emptyset \in \mathcal{I}$, (12) $X \subseteq Y \in \mathcal{I} \Rightarrow X \in \mathcal{I}$, (13) $X, Y \in \mathcal{I}$, $|X| < |Y| \Rightarrow \exists e \in X - Y \text{ s.t. } X + e \in \mathcal{I}$.

Introduced by Hassler Whitney (1935) and by Takeo Nakasawa (1935).


```
Remark: I \subseteq V is independent \Leftrightarrow C \not\subseteq I for every C \in C.
```

```
Remark: I \subseteq V is independent \Leftrightarrow C \not\subseteq I for every C \in C.
```

 $\mathcal{C}\subseteq 2^V$ is the family of circuits of a matroid if and only if

(C1) $\emptyset \notin C$. (C2) If $C_1, C_2 \in C$, then $C_1 \not\subset C_2$. (C3) If $C_1, C_2 \in C$ are distinct and $u \in C_1 \cap C_2$, then there exists $C_3 \in C$ such that $C_3 \subseteq (C_1 \cup C_2) - u$.

```
Remark: I \subseteq V is independent \Leftrightarrow C \not\subseteq I for every C \in C.
```

 $\mathcal{C}\subseteq 2^V$ is the family of circuits of a matroid if and only if

(C1) $\emptyset \notin C$. (C2) If $C_1, C_2 \in C$, then $C_1 \not\subset C_2$. (C3) If $C_1, C_2 \in C$ are distinct and $u \in C_1 \cap C_2$, then there exists $C_3 \in C$ such that $C_3 \subseteq (C_1 \cup C_2) - u$.

The maximum size of an independent set in X is the rank r(X) of X.

```
Remark: I \subseteq V is independent \Leftrightarrow C \not\subseteq I for every C \in C.
```

 $\mathcal{C}\subseteq 2^V$ is the family of circuits of a matroid if and only if

(C1) $\emptyset \notin C$. (C2) If $C_1, C_2 \in C$, then $C_1 \not\subset C_2$. (C3) If $C_1, C_2 \in C$ are distinct and $u \in C_1 \cap C_2$, then there exists $C_3 \in C$ such that $C_3 \subseteq (C_1 \cup C_2) - u$.

The maximum size of an independent set in X is the rank r(X) of X.

A set X is closed if r(X + e) > r(X) for every V - X.

```
Remark: I \subseteq V is independent \Leftrightarrow C \not\subseteq I for every C \in C.
```

 $\mathcal{C}\subseteq 2^V$ is the family of circuits of a matroid if and only if

(C1) Ø ∉ C.
(C2) If C₁, C₂ ∈ C, then C₁ ⊄ C₂.
(C3) If C₁, C₂ ∈ C are distinct and u ∈ C₁ ∩ C₂, then there exists C₃ ∈ C such that C₃ ⊆ (C₁ ∪ C₂) - u.

The maximum size of an independent set in X is the rank r(X) of X.

A set X is closed if r(X + e) > r(X) for every V - X.

A hyperplane is a closed set of rank r(V) - 1.

A definite Horn function $h: 2^V \to \{0,1\}$ is matroidal or matroid Horn if $h = \Phi_C$ for the family of circuits C of a matroid.

A definite Horn function $h: 2^{V} \to \{0,1\}$ is matroidal or matroid Horn if $h = \Phi_{C}$ for the family of circuits C of a matroid.

Goal: Study the properties of matroid Horn functions.

- Q1: Characterization of matroid Horn functions?
- Q2: Connection between Boolean and matroid terminology?
- Q3: Minimum representation of matroid Horn functions?
- Q4: Complexity of recognition problem?

A definite Horn function $h: 2^{V} \to \{0,1\}$ is matroidal or matroid Horn if $h = \Phi_{\mathcal{C}}$ for the family of circuits \mathcal{C} of a matroid.

Goal: Study the properties of matroid Horn functions.

- Q1: Characterization of matroid Horn functions?
- Q2: Connection between Boolean and matroid terminology?
- Q3: Minimum representation of matroid Horn functions?
- Q4: Complexity of recognition problem?

For a matroid Horn function h, a CNF representation $h = \Phi_C$ is canonical if C satisfies the circuit axioms (C1)–(C3).

A definite Horn function $h: 2^{V} \to \{0,1\}$ is matroidal or matroid Horn if $h = \Phi_{C}$ for the family of circuits C of a matroid.

Goal: Study the properties of matroid Horn functions.

- Q1: Characterization of matroid Horn functions?
- Q2: Connection between Boolean and matroid terminology?
- Q3: Minimum representation of matroid Horn functions?
- Q4: Complexity of recognition problem?

For a matroid Horn function h, a CNF representation $h = \Phi_C$ is canonical if C satisfies the circuit axioms (C1)–(C3).

For a Boolean function $f : 2^V \to \{0, 1\}$, the unique CNF representation that contains all prime implicates of f is the complete CNF of f.

Lemma

Let C be the family of circuits of a matroid \mathbb{M} , and let $h = \Phi_C$. Then we have $\mathbb{T}_h(X) = \operatorname{cl}_{\mathbb{M}}(X)$ for all $X \subseteq V$.

Lemma

Let C be the family of circuits of a matroid \mathbb{M} , and let $h = \Phi_C$. Then we have $\mathbb{T}_h(X) = \operatorname{cl}_{\mathbb{M}}(X)$ for all $X \subseteq V$.

Matroid ${\mathbb M}$ with circuit family ${\mathcal C}$	Matroid Horn function h represented by $\Phi_{\mathcal{C}}$
Bases of M	Minimal keys of <i>h</i>
Closed sets of ${\mathbb M}$	True sets of <i>h</i>
Hyperplanes of ${\mathbb M}$	Maximal nontrivial true sets of h

Characterizations

Characterizations in terms of canonical representations.

B, Boros, Makino, '23

Let $C \subseteq 2^V$ and let $h = \Phi_C$. Then the following are equivalent. (i) C satisfies circuit axiom (C3). (ii) $\mathcal{K}(h) = C^{dc}$. (ii) $\mathcal{M}(h) = C^{dcdc}$. (iv) $\mathcal{T}(h) = (C^{dcdc})^{\cap}$.

Characterizations

Characterizations in terms of canonical representations.

B, Boros, Makino, '23

Let $C \subseteq 2^V$ and let $h = \Phi_C$. Then the following are equivalent. (i) C satisfies circuit axiom (C3). (ii) $\mathcal{K}(h) = C^{dc}$. (ii) $\mathcal{M}(h) = C^{dcdc}$. (iv) $\mathcal{T}(h) = (C^{dcdc})^{\cap}$.

Characterizations in terms of complete CNF.

B, Boros, Makino, '23

For a definite Horn function h, the following are equivalent.

- (i) The function *h* is matroid Horn.
- (ii) The complete CNF of *h* is circular.
- (iii) The implicate-dual function hⁱ is matroid Horn.

(iv) The complete CNF of *hⁱ* is circular.

Minimum representations

Given $\mathcal{F} \subseteq 2^V$ and $\mathcal{G} \subseteq \mathcal{F}$, let $\langle \mathcal{G} \rangle_{\mathcal{F}}^1 = \mathcal{G} \cup \{ X \in \mathcal{F} \mid X = (X_1 \cup X_2) - v \text{ for distinct } X_1, X_2 \in \mathcal{G}, \ v \in X_1 \cap X_2 \}.$

Given $\mathcal{F} \subseteq 2^V$ and $\mathcal{G} \subseteq \mathcal{F}$, let $\langle \mathcal{G} \rangle_{\mathcal{F}}^1 = \mathcal{G} \cup \{ X \in \mathcal{F} \mid X = (X_1 \cup X_2) - v \text{ for distinct } X_1, X_2 \in \mathcal{G}, v \in X_1 \cap X_2 \}.$ **Remarks:**

- For $k \geq 2$, $\langle \mathcal{G} \rangle_{\mathcal{F}}^k \coloneqq \langle \langle \mathcal{G} \rangle_{\mathcal{F}}^{k-1} \rangle_{\mathcal{F}}^1$.
- If $\langle \mathcal{G} \rangle_{\mathcal{F}}^k = \langle \mathcal{G} \rangle_{\mathcal{F}}^{k+1}$, then the final system is denoted by $\langle \mathcal{G} \rangle_{\mathcal{F}}$, and \mathcal{G} is a generator of \mathcal{F} if $\langle \mathcal{G} \rangle_{\mathcal{F}} = \mathcal{F}$.

Given $\mathcal{F} \subseteq 2^V$ and $\mathcal{G} \subseteq \mathcal{F}$, let $\langle \mathcal{G} \rangle_{\mathcal{F}}^1 = \mathcal{G} \cup \{ X \in \mathcal{F} \mid X = (X_1 \cup X_2) - v \text{ for distinct } X_1, X_2 \in \mathcal{G}, v \in X_1 \cap X_2 \}.$ **Remarks:**

- For $k \geq 2$, $\langle \mathcal{G} \rangle_{\mathcal{F}}^k \coloneqq \langle \langle \mathcal{G} \rangle_{\mathcal{F}}^{k-1} \rangle_{\mathcal{F}}^1$.
- If $\langle \mathcal{G} \rangle_{\mathcal{F}}^k = \langle \mathcal{G} \rangle_{\mathcal{F}}^{k+1}$, then the final system is denoted by $\langle \mathcal{G} \rangle_{\mathcal{F}}$, and \mathcal{G} is a generator of \mathcal{F} if $\langle \mathcal{G} \rangle_{\mathcal{F}} = \mathcal{F}$.

For a matroid $\mathbb{M} = (V, C)$, let $h_{\mathbb{M}}$ be the corresponding matroid Horn function. For $C \in C$ and $v \in C$, the clause $(C - v) \rightarrow v$ is called a circuit clause.

Given $\mathcal{F} \subseteq 2^V$ and $\mathcal{G} \subseteq \mathcal{F}$, let $\langle \mathcal{G} \rangle_{\mathcal{F}}^1 = \mathcal{G} \cup \{ X \in \mathcal{F} \mid X = (X_1 \cup X_2) - v \text{ for distinct } X_1, X_2 \in \mathcal{G}, v \in X_1 \cap X_2 \}.$ Remarks:

- For $k \geq 2$, $\langle \mathcal{G} \rangle_{\mathcal{F}}^k \coloneqq \langle \langle \mathcal{G} \rangle_{\mathcal{F}}^{k-1} \rangle_{\mathcal{F}}^1$.
- If $\langle \mathcal{G} \rangle_{\mathcal{F}}^k = \langle \mathcal{G} \rangle_{\mathcal{F}}^{k+1}$, then the final system is denoted by $\langle \mathcal{G} \rangle_{\mathcal{F}}$, and \mathcal{G} is a generator of \mathcal{F} if $\langle \mathcal{G} \rangle_{\mathcal{F}} = \mathcal{F}$.

For a matroid $\mathbb{M} = (V, C)$, let $h_{\mathbb{M}}$ be the corresponding matroid Horn function. For $C \in C$ and $v \in C$, the clause $(C - v) \rightarrow v$ is called a circuit clause.

Goal: Find compact representations of $h_{\mathbb{M}}$, and therefore of \mathbb{M} .

Given $\mathcal{F} \subseteq 2^V$ and $\mathcal{G} \subseteq \mathcal{F}$, let $\langle \mathcal{G} \rangle_{\mathcal{F}}^1 = \mathcal{G} \cup \{ X \in \mathcal{F} \mid X = (X_1 \cup X_2) - v \text{ for distinct } X_1, X_2 \in \mathcal{G}, v \in X_1 \cap X_2 \}.$ Remarks:

- For $k \geq 2$, $\langle \mathcal{G} \rangle_{\mathcal{F}}^k \coloneqq \langle \langle \mathcal{G} \rangle_{\mathcal{F}}^{k-1} \rangle_{\mathcal{F}}^1$.
- If $\langle \mathcal{G} \rangle_{\mathcal{F}}^k = \langle \mathcal{G} \rangle_{\mathcal{F}}^{k+1}$, then the final system is denoted by $\langle \mathcal{G} \rangle_{\mathcal{F}}$, and \mathcal{G} is a generator of \mathcal{F} if $\langle \mathcal{G} \rangle_{\mathcal{F}} = \mathcal{F}$.

For a matroid $\mathbb{M} = (V, C)$, let $h_{\mathbb{M}}$ be the corresponding matroid Horn function. For $C \in C$ and $v \in C$, the clause $(C - v) \rightarrow v$ is called a circuit clause.

Goal: Find compact representations of $h_{\mathbb{M}}$, and therefore of \mathbb{M} .

(G) circuit generator: |M|_G = min cardinality of a generator of C, [≈ Complexity of C.]
(C) # of circuits: |M|_C = min cardinality of a subsystem D ⊆ C s.t. h_M = Φ_D,
(K) # of circuit clauses: |M|_K = min # of circuit clauses needed to represent h_M. [≈ Minimum number of clasues, but restricted to circuit clauses.]

Lemma

Let $\mathbb{M} = (V, \mathcal{C})$ be a simple binary matroid and $X \subseteq V$ be an independent set. Then there is at most one $v \in V$ for which X + v forms a circuit of \mathbb{M} .

Lemma

Let $\mathbb{M} = (V, \mathcal{C})$ be a simple binary matroid. If $C_1, C_2 \in \mathcal{C}$ are such that $|C_1 \setminus C_2| = 1$, then $|C_1| < |C_2|$.

Lemma

Let $\mathbb{M} = (V, \mathcal{C})$ be a simple binary matroid and $X \subseteq V$ be an independent set. Then there is at most one $v \in V$ for which X + v forms a circuit of \mathbb{M} .

Lemma

Let $\mathbb{M} = (V, C)$ be a simple binary matroid. If $C_1, C_2 \in C$ are such that $|C_1 \setminus C_2| = 1$, then $|C_1| < |C_2|$.

 $\Rightarrow C \in \mathcal{C} \text{ is chordless if there is no } C' \in \mathcal{C} \text{ with } |C' \setminus C| = 1 \text{ and } |C'| < |C|.$

Lemma

Let $\mathbb{M} = (V, \mathcal{C})$ be a simple binary matroid and $X \subseteq V$ be an independent set. Then there is at most one $v \in V$ for which X + v forms a circuit of \mathbb{M} .

Lemma

Let $\mathbb{M} = (V, C)$ be a simple binary matroid. If $C_1, C_2 \in C$ are such that $|C_1 \setminus C_2| = 1$, then $|C_1| < |C_2|$.

 $\Rightarrow C \in \mathcal{C} \text{ is chordless if there is no } C' \in \mathcal{C} \text{ with } |C' \setminus C| = 1 \text{ and } |C'| < |C|.$

B, Boros, Makino, '23

Let $\mathbb{M} = (V, C)$ be a simple binary matroid. Then the set of chordless cycles is the unique optimal solution with respect to $|\mathbb{M}|_{G}$, $|\mathbb{M}|_{C}$ and $|\mathbb{M}|_{K}$.

Uniform matroids

Recall: A matroid is uniform if $C = \{C \subseteq V \mid |C| = r + 1\}$.

Uniform matroids

Recall: A matroid is uniform if $C = \{C \subseteq V \mid |C| = r + 1\}$.

B, Boros, Makino, '23

Let $\mathbb{M} = (V, \mathcal{C})$ be a rank-r uniform matroid on $n \ge r+1$ elements. Then $|\mathbb{M}|_{\mathcal{G}} = n - r$ and $|\mathbb{M}|_{\mathcal{K}} = {n \choose r}$.

Uniform matroids

Recall: A matroid is uniform if $C = \{C \subseteq V \mid |C| = r + 1\}$.

B, Boros, Makino, '23

Let $\mathbb{M} = (V, \mathcal{C})$ be a rank-r uniform matroid on $n \ge r+1$ elements. Then $|\mathbb{M}|_{\mathcal{G}} = n - r$ and $|\mathbb{M}|_{\mathcal{K}} = \binom{n}{r}$.

B, Boros, Makino, '23

Let $\mathbb{M} = (V, C)$ be a rank-r uniform matroid on $n \ge r + 2$ elements. Then $\binom{n}{r}/(r + \frac{1}{2}) \le |\mathbb{M}|_C \le \binom{n}{r}$.

Sketch of the proof.

Upper bound: For an arbitrary $v \in V$, let $\mathcal{D} = \{X + v \mid X \subseteq V - v, |X| = r\}$. Then $F_{\Phi_{\mathcal{D}}}(X) = X$ if $|X| \leq r - 1$ and $F_{\Phi_{\mathcal{D}}}(X) = V$ otherwise.

Lower bound: If every *r*-element set X shares 1 token evenly among the sets in \mathcal{D} containing it, then every set in \mathcal{D} receives at most $r + \frac{1}{2}$ tokens in total.

An (r+1)-uniform hypergraph $\mathcal{H} \subseteq 2^V$ is

- a covering (n, r + 1, r)-system if every X ⊆ V of size r is contained in at least one hyperedge (min size: c(n, r + 1, r)),
- a Steiner (n, r + 1, r)-system if every X ⊆ V of size r is contained in exactly one hyperedge (min size: s(n, r + 1, r)),
- an implication (n, r + 1, r)-system if for every X ⊆ V of size at least r, there exists a hyperedge H ∈ H with |H \ X| = 1 (min size: b(n, r + 1, r)).

An (r+1)-uniform hypergraph $\mathcal{H} \subseteq 2^V$ is

- a covering (n, r + 1, r)-system if every X ⊆ V of size r is contained in at least one hyperedge (min size: c(n, r + 1, r)),
- a Steiner (n, r + 1, r)-system if every X ⊆ V of size r is contained in exactly one hyperedge (min size: s(n, r + 1, r)),
- an implication (n, r + 1, r)-system if for every X ⊆ V of size at least r, there exists a hyperedge H ∈ H with |H \ X| = 1 (min size: b(n, r + 1, r)).

Then we have $s(n, r + 1, r) \le c(n, r + 1, r) \le b(n, r + 1, r)$.

An (r+1)-uniform hypergraph $\mathcal{H} \subseteq 2^V$ is

- a covering (n, r + 1, r)-system if every X ⊆ V of size r is contained in at least one hyperedge (min size: c(n, r + 1, r)),
- a Steiner (n, r + 1, r)-system if every X ⊆ V of size r is contained in exactly one hyperedge (min size: s(n, r + 1, r)),
- an implication (n, r + 1, r)-system if for every X ⊆ V of size at least r, there exists a hyperedge H ∈ H with |H \ X| = 1 (min size: b(n, r + 1, r)).

Then we have $s(n, r+1, r) \leq c(n, r+1, r) \leq b(n, r+1, r)$.

Horn-logic interpretation: $\mathcal{H} \subseteq 2^V$ is

- a covering (n, r+1, r)-system if $\mathbb{T}_{\Phi_{\mathcal{H}}}(X) \neq X$ for all $X \subseteq V, |X| = r$,
- a Steiner (n, r+1, r)-system if $|\mathbb{T}_{\Phi_{\mathcal{H}}}(X)| = r+1$ for all $X \subseteq V, |X| = r$,
- an implication (n, r+1, r)-system if $\mathbb{T}_{\Phi_{\mathcal{H}}}(X) = V$ for all $X \subseteq V, |X| = r$.

An (r+1)-uniform hypergraph $\mathcal{H} \subseteq 2^V$ is

- a covering (n, r + 1, r)-system if every X ⊆ V of size r is contained in at least one hyperedge (min size: c(n, r + 1, r)),
- a Steiner (n, r + 1, r)-system if every X ⊆ V of size r is contained in exactly one hyperedge (min size: s(n, r + 1, r)),
- an implication (n, r + 1, r)-system if for every X ⊆ V of size at least r, there exists a hyperedge H ∈ H with |H \ X| = 1 (min size: b(n, r + 1, r)).

Then we have $s(n, r+1, r) \leq c(n, r+1, r) \leq b(n, r+1, r)$.

Horn-logic interpretation: $\mathcal{H} \subseteq 2^V$ is

- a covering (n, r+1, r)-system if $\mathbb{T}_{\Phi_{\mathcal{H}}}(X) \neq X$ for all $X \subseteq V, |X| = r$,
- a Steiner (n, r+1, r)-system if $|\mathbb{T}_{\Phi_{\mathcal{H}}}(X)| = r+1$ for all $X \subseteq V, |X| = r$,
- an implication (n, r+1, r)-system if $\mathbb{T}_{\Phi_{\mathcal{H}}}(X) = V$ for all $X \subseteq V, |X| = r$.

 \Rightarrow For a rank-r uniform matroid, $\mathcal{D} \subseteq \mathcal{C}$ satisfy $h_{\mathbb{M}} = \Phi_{\mathcal{D}}$ if and only if \mathcal{D} forms an implication (n, r + 1, r)-system.

Lower and upper bounds

B, Boros, Makino, '23

Let $\mathbb{M} = (V, C)$ be a rank-r uniform matroid on $n \ge r+1$ elements. Then $c(n, r+1, r) \le |\mathbb{M}|_C \le 2 \cdot c(n, r+1, r).$

Lower and upper bounds

B, Boros, Makino, '23

Let $\mathbb{M} = (V, C)$ be a rank-r uniform matroid on $n \ge r+1$ elements. Then $c(n, r+1, r) \le |\mathbb{M}|_C \le 2 \cdot c(n, r+1, r).$

B, Boros, Makino, '23

Let $\mathbb{M}=(V,\mathcal{C})$ be a rank-2 uniform matroid on $n\geq$ 46 elements. Then $|\mathbb{M}|_{\mathcal{C}}=rac{n^2}{5}+O(n).$

Lower and upper bounds

B, Boros, Makino, '23

Let $\mathbb{M} = (V, C)$ be a rank-r uniform matroid on $n \ge r+1$ elements. Then $c(n, r+1, r) \le |\mathbb{M}|_C \le 2 \cdot c(n, r+1, r).$

B, Boros, Makino, '23

Let $\mathbb{M}=(V,\mathcal{C})$ be a rank-2 uniform matroid on $n\geq$ 46 elements. Then $\|\mathbb{M}\|_{\mathcal{C}}=rac{n^2}{5}+O(n).$

Open problem: Given a rank-*r* uniform matroid \mathbb{M} , what is the right order of magnitude of $|\mathbb{M}|_{\mathcal{C}} = b(n, r+1, r)$?

Open problem: What is the computational complexity of checking if a given a definite Horn function h represented by a definite Horn CNF Ψ is matroid Horn or not?

Thank you for your attention...

K. Bérczi, E. Boros, M. Kazuhisa, Matroid Horn functions, arXiv:2301.06642 (2023).

K. Bérczi, E. Boros, M. Kazuhisa, Hypergraph Horn functions, arXiv:2301.05461 (2023).

...and happy birthday, Endre!