
Matroid Horn functions

Kristóf Bérczi

Joint work with Endre Boros and Kazuhisa Makino

MTA-ELTE Matroid Optimization Research Group

Department of Operations Research, Eötvös Loránd University

Boolean Seminar Liblice

September 26, 2023



Long story short...

A long time ago in a city far, far away...

(May 2018, Budapest)

Not so long ago, but even further away...

(January 2020, Kyoto)

A few waves of COVID later...

(May 2022, Kyoto)

Finally...

(January 2023, Kyoto)



Long story short...

A long time ago in a city far, far away...

(May 2018, Budapest)

Let's associate Horn functions

to matroids!

Not so long ago, but even further away...

(January 2020, Kyoto)

A few waves of COVID later...

(May 2022, Kyoto)

Finally...

(January 2023, Kyoto)



Long story short...

A long time ago in a city far, far away...

(May 2018, Budapest)

Let's associate Horn functions

to matroids!

Good idea, there are a lot

of nice questions here!

Not so long ago, but even further away...

(January 2020, Kyoto)

A few waves of COVID later...

(May 2022, Kyoto)

Finally...

(January 2023, Kyoto)



Long story short...

A long time ago in a city far, far away...

(May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away...

(January 2020, Kyoto)

A few waves of COVID later...

(May 2022, Kyoto)

Finally...

(January 2023, Kyoto)



Long story short...

A long time ago in a city far, far away...

(May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away...

(January 2020, Kyoto)

A few waves of COVID later...

(May 2022, Kyoto)

Finally...

(January 2023, Kyoto)



Long story short...

A long time ago in a city far, far away...

(May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away...

(January 2020, Kyoto)

Here is a write-up of

what we have so far.

Sure, but we could also con-

sider hypergraphs.

A few waves of COVID later...

(May 2022, Kyoto)

Finally...

(January 2023, Kyoto)



Long story short...

A long time ago in a city far, far away...

(May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away...

(January 2020, Kyoto)

Here is a write-up of

what we have so far.

Sure, but we could also con-

sider hypergraphs.

A few waves of COVID later...

(May 2022, Kyoto)

Finally...

(January 2023, Kyoto)



Long story short...

A long time ago in a city far, far away...

(May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away...

(January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

A few waves of COVID later...

(May 2022, Kyoto)

Finally...

(January 2023, Kyoto)



Long story short...

A long time ago in a city far, far away...

(May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away...

(January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

A few waves of COVID later...

(May 2022, Kyoto)

Finally...

(January 2023, Kyoto)



Long story short...

A long time ago in a city far, far away...

(May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away...

(January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

A few waves of COVID later...

(May 2022, Kyoto)

New observations on im-

plicate duality!

Great, we should wrap up ev-

erything.

Finally...

(January 2023, Kyoto)



Long story short...

A long time ago in a city far, far away...

(May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away...

(January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

A few waves of COVID later...

(May 2022, Kyoto)

New observations on im-

plicate duality!

Great, we should wrap up ev-

erything.

Finally...

(January 2023, Kyoto)



Long story short...

A long time ago in a city far, far away...

(May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away...

(January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

A few waves of COVID later...

(May 2022, Kyoto)

Yay, let's have a beer!

Go ahead, I'm in a di�erent

city :(

Finally...

(January 2023, Kyoto)



Long story short...

A long time ago in a city far, far away...

(May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away...

(January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

A few waves of COVID later...

(May 2022, Kyoto)

Yay, let's have a beer!

Go ahead, I'm in a di�erent

city :(

Finally...

(January 2023, Kyoto)



Long story short...

A long time ago in a city far, far away...

(May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away...

(January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

A few waves of COVID later...

(May 2022, Kyoto)

Yay, let's have a beer!

Go ahead, I'm in a di�erent

city :(

Finally...

(January 2023, Kyoto)

We �nished with

everything!



Long story short...

A long time ago in a city far, far away...

(May 2018, Budapest)

Yay, let's have a beer!

Yay, let's have a beer!

Not so long ago, but even further away...

(January 2020, Kyoto)

Yay, let's have a beer!

Yay, let's have a beer!

A few waves of COVID later...

(May 2022, Kyoto)

Yay, let's have a beer!

Go ahead, I'm in a di�erent

city :(

Finally...

(January 2023, Kyoto)

Yay, let's have a

beer!



Outline

Hypergraph Horn functions

Hypergraphs, de�nite Horn functions

Circular CNFs

Matroids

Circuits, closed sets, hyperplanes

Matroid Horn functions

Translation between matroidal and Boolean terminology

Characterizations

Minimum representations

Objectives

Binary matroids

Uniform matroids



Hypergraph Horn functions



Hypergraphs

Given a �nite set V , a hypergraph is a family H ⊆ 2V . The hypergraph is

Sperner if H1 ̸⊂ H2 for any H1,H2 ∈ H.

The complementary family of H is Hc = {V \ H | H ∈ H}.
Remark: (Hc)c = H.

T ⊆ V is a transversal of H if T ∩ H ̸= ∅ for every H ∈ H. The family of

minimal transversals of H is denoted by Hd .

Remark: For Sperner hypergraphs, (Hd)d = H.

The intersection closure of H is

H∩ =

{ ⋂
F∈F

F

∣∣∣∣∣ F ⊆ H

}
.
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True sets, keys, and closure

For a de�nite Horn function h : 2V → {0, 1}, T (h) is the family of true sets of

h. For Z ⊆ V , Th(Z ) is the unique minimal true set containing Z . The set is

closed if Th(Z ) = Z .

Remark: Th(Z ) is the so-called forward-chaining closure of Z .

K ⊆ V is a key of h if Th(K ) = V . The family of minimal keys of h is

K(h) = {K ⊆ V | Th(K ) = V and Th(K
′) ̸= V for all K ′ ⊊ K}.

The family of maximal nontrivial true sets of h is

M(h) = {T ⊊ V | h(T ) = 1 and h(T ′) = 0 for all T ⊊ T ′ ⊊ V }.
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Circular CNFs

An implicate A → v of a Boolean function f : 2V → {0, 1} is circular if

((A+ v)− u) → u is also an implicate for every u ∈ A.

For a hypergraph H ⊆ 2V , the circular CNF associated to H is

ΦH =
∧
H∈H

(∧
v∈H

((H − v) → v)

)
.

A de�nite Horn function h : 2V → {0, 1} is hypergraph Horn if h = ΦH for

some hypergraph H ⊆ 2V .

Remarks:

• ΦH = ΦH′ might hold even if H is Sperner while H′ is not.

• ΦH might have non-circular implicates.

⇒ Stay tuned for Endre's talk!
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Matroids

Given a ground set V , a matroid M = (V , I) is a pair where I ⊆ 2V satis�es

the independence axioms:

(I1) ∅ ∈ I,
(I2) X ⊆ Y ∈ I ⇒ X ∈ I,
(I3) X ,Y ∈ I, |X | < |Y | ⇒ ∃e ∈ X − Y s.t. X + e ∈ I.

Introduced by Hassler Whitney (1935) and by Takeo Nakasawa (1935).

Examples:
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Circuits, closed sets, hyperplanes

Maximal independent sets are called bases , minimal dependent sets are called

circuits.

Remark: I ⊆ V is independent ⇔ C ̸⊆ I for every C ∈ C.

C ⊆ 2V is the family of circuits of a matroid if and only if

(C1) ∅ /∈ C.
(C2) If C1,C2 ∈ C, then C1 ̸⊂ C2.

(C3) If C1,C2 ∈ C are distinct and u ∈ C1 ∩ C2, then there exists C3 ∈ C such

that C3 ⊆ (C1 ∪ C2)− u.

The maximum size of an independent set in X is the rank r(X ) of X .

A set X is closed if r(X + e) > r(X ) for every V − X .

A hyperplane is a closed set of rank r(V )− 1.
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Matroid Horn functions

A de�nite Horn function h : 2V → {0, 1} is matroidal or matroid Horn if h = ΦC

for the family of circuits C of a matroid.

Goal: Study the properties of matroid Horn functions.

Q1: Characterization of matroid Horn functions?

Q2: Connection between Boolean and matroid terminology?

Q3: Minimum representation of matroid Horn functions?

Q4: Complexity of recognition problem?

For a matroid Horn function h, a CNF representation h = ΦC is canonical if C
satis�es the circuit axioms (C1)�(C3).

For a Boolean function f : 2V → {0, 1}, the unique CNF representation that

contains all prime implicates of f is the complete CNF of f .
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Boolean vs. matroid terminology

Lemma

Let C be the family of circuits of a matroid M, and let h = ΦC . Then we have

Th(X ) = clM(X ) for all X ⊆ V .

Matroid M with

circuit family C
Matroid Horn function h

represented by ΦC

Bases of M Minimal keys of h

Closed sets of M True sets of h

Hyperplanes of M Maximal nontrivial true sets of h
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Characterizations

Characterizations in terms of canonical representations.

B, Boros, Makino, '23

Let C ⊆ 2V and let h = ΦC . Then the following are equivalent.

(i) C satis�es circuit axiom (C3).

(ii) K(h) = Cdc .

(ii) M(h) = Cdcdc .

(iv) T (h) =
(
Cdcdc

)∩
.

Characterizations in terms of complete CNF.

B, Boros, Makino, '23

For a de�nite Horn function h, the following are equivalent.

(i) The function h is matroid Horn.

(ii) The complete CNF of h is circular.

(iii) The implicate-dual function hi is matroid Horn.

(iv) The complete CNF of hi is circular.
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Objectives

Given F ⊆ 2V and G ⊆ F , let

⟨G⟩1F = G ∪ {X ∈ F | X = (X1 ∪X2)− v for distinct X1,X2 ∈ G, v ∈ X1 ∩X2}.

Remarks:

• For k ≥ 2, ⟨G⟩kF := ⟨⟨G⟩k−1
F ⟩1F .

• If ⟨G⟩kF = ⟨G⟩k+1F , then the �nal system is denoted by ⟨G⟩F , and G is a

generator of F if ⟨G⟩F = F .

For a matroid M = (V , C), let hM be the corresponding matroid Horn function.

For C ∈ C and v ∈ C , the clause (C − v) → v is called a circuit clause.

Goal: Find compact representations of hM, and therefore of M.

(G) circuit generator: |M|G = min cardinality of a generator of C,
[≈ Complexity of C.]

(C) ♯ of circuits: |M|C = min cardinality of a subsystem D ⊆ C s.t. hM = ΦD,

(K) ♯ of circuit clauses: |M|K = min ♯ of circuit clauses needed to represent hM.

[≈ Minimum number of clasues, but restricted to circuit clauses.]
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(K) ♯ of circuit clauses: |M|K = min ♯ of circuit clauses needed to represent hM.

[≈ Minimum number of clasues, but restricted to circuit clauses.]
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Binary matroids

Recall: A matroid is binary if it is a linear matroid over Z2.

Lemma

Let M = (V , C) be a simple binary matroid and X ⊆ V be an independent set.

Then there is at most one v ∈ V for which X + v forms a circuit of M.

Lemma

Let M = (V , C) be a simple binary matroid. If C1,C2 ∈ C are such that

|C1 \ C2| = 1, then |C1| < |C2|.

⇒ C ∈ C is chordless if there is no C ′ ∈ C with |C ′ \ C | = 1 and |C ′| < |C |.

B, Boros, Makino, '23

Let M = (V , C) be a simple binary matroid. Then the set of chordless cycles

is the unique optimal solution with respect to |M|G , |M|C and |M|K .
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Uniform matroids

Recall: A matroid is uniform if C = {C ⊆ V | |C | = r + 1}.

B, Boros, Makino, '23

Let M = (V , C) be a rank-r uniform matroid on n ≥ r + 1 elements. Then

|M|G = n − r and |M|K =
(
n
r

)
.

B, Boros, Makino, '23

Let M = (V , C) be a rank-r uniform matroid on n ≥ r + 2 elements. Then(
n
r

)
/(r + 1

2
) ≤ |M|C ≤

(
n
r

)
.

Sketch of the proof.

Upper bound: For an arbitrary v ∈ V , let D = {X + v | X ⊆ V − v , |X | = r}.
Then FΦD (X ) = X if |X | ≤ r − 1 and FΦD (X ) = V otherwise.

Lower bound: If every r -element set X shares 1 token evenly among the sets in

D containing it, then every set in D receives at most r + 1
2
tokens in total.
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Turán systems

An (r + 1)-uniform hypergraph H ⊆ 2V is

• a covering (n, r + 1, r)-system if every X ⊆ V of size r is contained in at

least one hyperedge (min size: c(n, r + 1, r)),
• a Steiner (n, r + 1, r)-system if every X ⊆ V of size r is contained in

exactly one hyperedge (min size: s(n, r + 1, r)),
• an implication (n, r + 1, r)-system if for every X ⊆ V of size at least r ,

there exists a hyperedge H ∈ H with |H \ X | = 1 (min size: b(n, r + 1, r)).

Then we have s(n, r + 1, r) ≤ c(n, r + 1, r) ≤ b(n, r + 1, r).

Horn-logic interpretation: H ⊆ 2V is

• a covering (n, r + 1, r)-system if TΦH(X ) ̸= X for all X ⊆ V , |X | = r ,
• a Steiner (n, r + 1, r)-system if |TΦH(X )| = r + 1 for all X ⊆ V , |X | = r ,
• an implication (n, r + 1, r)-system if TΦH(X ) = V for all X ⊆ V , |X | = r .

⇒ For a rank-r uniform matroid, D ⊆ C satisfy hM = ΦD if and only if D forms

an implication (n, r + 1, r)-system.
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Lower and upper bounds

B, Boros, Makino, '23

Let M = (V , C) be a rank-r uniform matroid on n ≥ r + 1 elements. Then

c(n, r + 1, r) ≤ |M|C ≤ 2 · c(n, r + 1, r).

B, Boros, Makino, '23

Let M = (V , C) be a rank-2 uniform matroid on n ≥ 46 elements. Then

|M|C =
n2

5
+ O(n).

Open problem: Given a rank-r uniform matroid M, what is the right order of

magnitude of |M|C = b(n, r + 1, r)?

Open problem: What is the computational complexity of checking if a given

a de�nite Horn function h represented by a de�nite Horn CNF Ψ is matroid

Horn or not?
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Thank you for your attention...

K. Bérczi, E. Boros, M. Kazuhisa, Matroid Horn functions, arXiv:2301.06642 (2023).

K. Bérczi, E. Boros, M. Kazuhisa, Hypergraph Horn functions, arXiv:2301.05461 (2023).



...and happy birthday, Endre!
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