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Abstract. We survey and compare parameterizations of the propo-
sitional satisfiability problem (SAT) in the framework of Parameter-
ized Complexity (Downey and Fellows, 1999). In particular, we consider
(a) parameters based on structural graph decompositions (tree-width,
branch-width, and clique-width), (b) a parameter emerging from match-
ing theory (maximum deficiency), and (c) a parameter defined by trans-
lating clause-sets into certain implicational formulas (falsum number).

1 Introduction

The framework of Parameterized Complexity, introduced by Downey and Fellows
[12], provides a means for coping with computational hard problems: It turned
out that many intractable (and even undecidable) problems can be solved effi-
ciently “by the slice”, that is, in time O(f(k) · nα) where f is any function of
some parameter k, n is the size of the instance, and α is a constant independent
from k. In this case the problem is called fixed-parameter tractable (FPT). If a
problem is FPT, then instances of large size can be solved efficiently.

The objective of this paper is to survey and compare known results for fixed-
parameter tractable SAT decision. Although the SAT problem has been con-
sidered in more general works on parameterized complexity (e.g., [9]) and FPT
results have been obtained focusing on a single parameterization of SAT (e.g.,
[2, 18]), it appears that no broader approach has been devoted to this subject.

We suggest the following concept of fixed-parameter tractability for SAT.
Consider a parameter π for clause-sets; i.e., π is a function which assigns some
non-negative integer π(F ) to any given clause-set F . We say that “satisfiability of
clause-sets with bounded π is fixed-parameter tractable” if there is an algorithm
which answers correctly for given clause-sets F and k ≥ 0

“F is satisfiable” or “F is unsatisfiable” or “π(F ) > k”

in time O(f(k) · lα); here l denotes the length (i.e., sum of clause widths) of F , f
is any function, and α is a constant independent from k. (Being aware of the phe-
nomenon of so-called “robust algorithms” [27, 13], we do not require (i) that the
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Purpose of Talk
• Briefly discuss background SAT theory vs SAT practice 


• Outline the parameterized complexity framework


• Discuss ways of parametrising SAT (decompositions, 
backdoors, hybrid parameters)


• Focus on more recent progress (tww, bd depth, bd tw)


• Not a technical talk, rather give a general picture and discuss 
what questions can be asked 
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Propositional satisfiability (SAT)
• SAT (or CNF-SAT) is the following problem:


• Instance: a propositional formula in conjunctive normal form


• Question: is the formula satisfiable? 
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satisfied by setting  

define literal, clause, occurrence, truth assignment, applying partial assignment 

F = {C1, …, C5}

C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x}, C5 = {x, y, z}

y = 1,u = 0,v = 1,x = 0

F[t]
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TAOCP
• Donald E Knuth wrote a 300+ page chapter on SAT in his TAOCP.
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“The story of satisfiability is the tale of a 
triumph of software engineering, blended 
with rich doses of beautiful mathematics.”  

Berkeley, April 2023
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Classical 3SAT Time Bounds—SAT is hard

• For  that exceeds the number of nano seconds that passed since the big bang!n = 250
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2n

1.3333n

1.3302n

1.3290n

1.3280n

1.324n

 trivial

 1999 (Schöning)

2002

 2003

2003

 2010 (Hertli)

3SAT time bounds

Exponential Time Hypothesis (ETH)
 [Impagliazzo, Paturi & Zane 2001] 

no sub exponential time 
algorithm for 3SAT
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CDCL SAT solvers—SAT is easy

• Conflict-driven Clause Learning solvers emerged around the 
millennium


• Orders of magnitude faster than previous algorithms


• Today solve industrial instances with millions of variables and 
clauses routinely


• Continuous progress in solving, encoding, certifying, 
quantifying, counting, optimizing

7
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• The Pre-Revolution (< 2000)


• DPLL 1960s, Variable selection heuristics 1990s, DIMACS SAT Challenges


• The Revolution (≈ 2000)


• Solvers GRASP, Chaff, Conflict-driven Clause learning (CDCL), Watched Literal data 
structure, etc


• The Evolution (> 2000)


• Efficient encodings, incremental solving, in/preprocessing, parallelization, proofs, cube and 
conquer, open source 
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THE PROPOSITIONAL SAT ISFIABILITY problem (SAT) 
was the first to be shown NP-complete by Cook and 
Levin. SAT remained the embodiment of theoretical 
worst-case hardness. However, in stark contrast to its 
theoretical hardness, SAT has emerged as a central 
target problem for efficiently solving a wide variety 
of computational problems. SAT solving technology 
has continuously advanced since a breakthrough 
around the millennium, which catapulted practical 
SAT solving ahead by orders of magnitudes. Today, 
the many flavors of SAT technology can be found in all 
areas of technological innovation.

SAT asks whether a given propositional formula is 
satisfiable. That is, can we set the formula’s variables 
to values 1 (True) or 0 (False) in such a way that the 
entire formula evaluates to 1? F = (x1 Ú x2 Ú x3) Ù 
(¬x1 Ú ¬x2 Ú ¬x3) Ù (¬x1 Ú x2) Ù (x2 Ú x3) is a simple 
propositional formula in conjunctive normal form 
(CNF), where x1, x2, and x3 are propositional variables 

and Ú, Ù, and ¬ refer to the logical opera-
tors OR (disjunction), AND (conjunc-
tion), and NOT (negation), respectively. 
A variable xi or a negated variable ¬xi is a 
literal, and a disjunction of literals is a 
clause. So, the above formula F is a con-
junction of four clauses. The formula is 
satisfiable; we can satisfy it by the truth 
assignment that sets x1 and x2 to 1, and 
x3 to 0: the first, third, and fourth clauses 
are satisfied by x2 = 1 because the clauses 
contain x2. The second clause is satis-
fied by x3 = 0 because it contains ¬x3. In 
consequence, all clauses are satisfied. A 
truth assignment naturally extends 
from variables to literals by setting ¬x to 
the opposite value of x. Hence, a formu-
la is satisfiable if and only if there is a 
truth assignment that sets at least one 
literal in each clause to 1.

Example 1 shows a larger formula 
that is unsatisfiable—that is, not satis-
fied by any assignment. The focus on 
CNF formulas is not a restriction. The 
so-called Tseitin transformation39 ef-
ficiently transforms any propositional 
formula into CNF without affecting its 
satisfiability.

At first glance, the SAT problem 
looks inconspicuous since it is simple 
to state, does not look difficult to solve, 
and seems uninteresting for practi-
cal purposes. Still, Stephen Cook7 and 
Leonid Levin29 showed independently 
in the 1970s that SAT is NP-complete, 
making it the first NP-complete prob-
lem. So, suppose one could solve SAT in 
polynomial time on arbitrary input. In 

The Silent  
(R)evolution  
of SAT
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Today’s powerful, robust SAT solvers have 
become primary tools for solving hard 
computational problems.
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 key insights
 ! Propositional Satisfiability (SAT) has 

been a cornerstone of computational 
complexity theory; now, it has become a 
central target problem for solving hard 
computational problems in practice.

 ! Since the revolution in SAT solving for 
decision problems that took place around 
the millennium, significant efficiency 
improvements have been achieved, and 
new methods for certification and trust 
have been added.

 ! Over the last 10 years, SAT further 
evolved by broadening its applications, 
including optimization, counting, and 
even problems involving quantifiers.
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to as core-guided optimization. Notably, 
core-guided optimization is very suc-
cessful when solving problems such as 
MaxSAT, the problem of maximizing 
the number of satisfied clauses (Propo-
sitional Problems sidebar). Example 8 
describes the use of soft clauses on our 
running example, which is the basis for 
MaxSAT. A popular approach for Max-
SAT solving uses as a subroutine the 
computation of a minimal hitting set 
on unsatisfiable cores, usually achieved 
using a Mixed-Integer Programming 
(MIP) solver.

Outlook
Over the last two decades, SAT solving 
techniques have changed how we tackle 
hard computational problems. The SAT 
revolution is significantly less known 
than the celebrated success of machine 
learning with its ubiquitous and widely 
reported impact on technology and so-
ciety. SAT solvers have influenced mod-
ern technology more silently. They are 
used in computational biology,20 for 
planning,4  to verify modern hardware,4 
operating systems, software,4 and even 
mathematical statements.4 This makes 
SAT crucial to the progress of modern 
information technology. Still, critical 
Computer Science challenges related to 
SAT solving are still ahead: How can we 
further improve parallel search to take 
full advantage of modern massively par-
allel hardware? Why does SAT solving 
often work so well in practice, and what 
characterizes the cases where it strug-
gles? How can we improve the process 
of coming up with good encodings? Fi-
nally, will SAT be widely applied also to 
computational physics, chemistry, or 
non-symbolic AI? To some extent, the 
revolutions of SAT and machine learn-
ing are complementary. There is much 
potential in combining the two.
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Example 8. Soft clauses allow us to deal 
with inconsistent requirements.

Recall Example 6, where we introduced 
an assumption on clause c17. Instead, we 
could also declare clause c17 a soft clause 
that should be satisfied if possible, not 
mandatorily. From our example, we can 
see that this clause cannot be satisfied, as 
the entire formula with c17 is unsatisfiable.
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THE PROPOSIT IONAL S ATI SFI A B ILITY problem (SAT) 
was the first to be shown NP-complete by Cook and 
Levin. SAT remained the embodiment of theoretical 
worst-case hardness. However, in stark contrast to its 
theoretical hardness, SAT has emerged as a central 
target problem for efficiently solving a wide variety 
of computational problems. SAT solving technology 
has continuously advanced since a breakthrough 
around the millennium, which catapulted practical 
SAT solving ahead by orders of magnitudes. Today, 
the many flavors of SAT technology can be found in all 
areas of technological innovation.

SAT asks whether a given propositional formula is 
satisfiable. That is, can we set the formula’s variables 
to values 1 (True) or 0 (False) in such a way that the 
entire formula evaluates to 1? F = (x1 Ú x2 Ú x3) Ù 
(¬x1 Ú ¬x2 Ú ¬x3) Ù (¬x1 Ú x2) Ù (x2 Ú x3) is a simple 
propositional formula in conjunctive normal form 
(CNF), where x1, x2, and x3 are propositional variables 

and Ú, Ù, and ¬ refer to the logical opera-
tors OR (disjunction), AND (conjunc-
tion), and NOT (negation), respectively. 
A variable xi or a negated variable ¬xi is a 
literal, and a disjunction of literals is a 
clause. So, the above formula F is a con-
junction of four clauses. The formula is 
satisfiable; we can satisfy it by the truth 
assignment that sets x1 and x2 to 1, and 
x3 to 0: the first, third, and fourth clauses 
are satisfied by x2 = 1 because the clauses 
contain x2. The second clause is satis-
fied by x3 = 0 because it contains ¬x3. In 
consequence, all clauses are satisfied. A 
truth assignment naturally extends 
from variables to literals by setting ¬x to 
the opposite value of x. Hence, a formu-
la is satisfiable if and only if there is a 
truth assignment that sets at least one 
literal in each clause to 1.

Example 1 shows a larger formula 
that is unsatisfiable—that is, not satis-
fied by any assignment. The focus on 
CNF formulas is not a restriction. The 
so-called Tseitin transformation39 ef-
ficiently transforms any propositional 
formula into CNF without affecting its 
satisfiability.

At first glance, the SAT problem 
looks inconspicuous since it is simple 
to state, does not look difficult to solve, 
and seems uninteresting for practi-
cal purposes. Still, Stephen Cook7 and 
Leonid Levin29 showed independently 
in the 1970s that SAT is NP-complete, 
making it the first NP-complete prob-
lem. So, suppose one could solve SAT in 
polynomial time on arbitrary input. In 
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 key insights
 ! Propositional Satisfiability (SAT) has 

been a cornerstone of computational 
complexity theory; now, it has become a 
central target problem for solving hard 
computational problems in practice.

 ! Since the revolution in SAT solving for 
decision problems that took place around 
the millennium, significant efficiency 
improvements have been achieved, and 
new methods for certification and trust 
have been added.

 ! Over the last 10 years, SAT further 
evolved by broadening its applications, 
including optimization, counting, and 
even problems involving quantifiers.
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Time Leap Challenge

9

new computer  
old algorithm

old computer
new algorithm

Comp 2019 Comp 1999Algo 1999 Algo 2014

Grasp zChaff siege v3 Glucose CaDiCal Maple
(1996) (2001) (2003) (2016) (2019) (2019)

old HW (1999) 73 48 37 106 98 77

new HW (2019) 76 71 93 188 190 195

Team SW

Team HW

Table 1: Summary of experimental results

implementation or hardware tricks, they provide an excellent comparison of the algorithmic ad-
vancement of solver techniques. We therefore included, for comparison, the results of Knuth’s
solvers on the same benchmark set and hardware platform as the time leap challenge. Mitchell [54]
provides an overview of techniques, implementations, and algorithmic advances of the year 2005
and looking back for 15 years. He already mentioned that the success of SAT-solving is due to
three factors: improved algorithms, improved implementation techniques, and increased machine
capacity. However, Mitchell’s work does not provide evaluations on any actual practical e↵ects at
the time. Kohlhase [46] recently published work on collecting and preserving the comparability
of old theorem provers to preserve cultural artifacts and history in Artificial Intelligence.1 For an
overview on the technique of CDCL-based solvers we refer the reader to introductory literature
such as a chapter in the Handbook of Knowledge Representation [29], chapters on the history of
modern SAT-solving [24], and CDCL-solvers [53] in the Handbook of Satisfiability [9]. Katebi,
Sakallah, and Marques-Silva [43, 64] considered various techniques of modern SAT-solvers un-
der an empirical viewpoint. They designed experiments to evaluate factors and the aggregation
of di↵erent SAT-enhancements that contribute to today’s practical success of modern solvers.
Works on targeted algorithm engineering for SAT-solvers are extensive. Just to name a few
examples, there is work on exploiting features such as optimizing memory footprints for the ar-
chitecture [10], on implementing cache-aware [13], on using huge pages [22], on how to benefit
from parallel solving [35] or employing inprocessing. Inprocessing particularly takes advantage of
modern hardware as one can execute much more instructions on a modern CPU than accessing
bytes on memory [31, 51]. Very recently, Audemard, Paulev, and Simon [1] published a heritage
system for SAT solvers. It allows for compiling, archiving, and running almost all released SAT
solvers and is based on Docker, GitHub, and Zenodo. While they aim for archivability, our
work provides an actual experiment incorporating soft- and hardware advances. We hope that
their system allows for long term preservation and, if there is no major change in the computer
architecture, that one can repeat our time leap challenge in another decade.

2 The Arena: Designing the Time Leap Challenge

To run a proper challenge, we design an arena by selecting from standard benchmark sets and
several contestants out of a vast space of possibilities. We aim for the reasonable oldest hardware
on which we can still run modern benchmark sets and solvers. In turn, this requires to set up a
modern operating system on old hardware. To make it a time leap challenge, we are interested
in solvers and hardware from similar generations, so a preferably small time frame from which
both originate. The physical e↵ort restricts us to consider only two time frames in the following.
We take modern hardware and solvers from 2019 and old hardware from around 2000 and solvers
from 2001/2002. Following academic ideas by Stallman [69], we focus on benchmark sets and

1
The Theorem Prover Museum is available online at https://theoremprover-museum.github.io/

3

update arXiv:2008.02215v2 [Fichte, Hecher, Sz. CP 2020]

https://arxiv.org/abs/2008.02215
https://doi.org/10.1007/978-3-030-58475-7_16
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How to resolve the mystery easy vs hard?

• Structure matters!


• How to capture structure?
10

real-world instance 
(SW verification)

random instance
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Correlational Approach
• Try to capture structure in a way that statistically 

correlates with CDCL-solving time  

• community structure, modularity, centrality,..


• In general, industrial formulas have an exceptionally high 
modularity, greater than 0.8 in many cases. Notice that in 
other kind of networks, values greater than 0.7 are rare 
[Ansotegui et al. JAIR 2019] 


• No performance guarantee! [Ganian, Sz, AIJ 2021]

11

https://doi.org/10.1613/jair.1.11741
https://doi.org/10.1016/j.artint.2021.103460
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Causational Approach

• Try to capture structure in a way that provides worst-case 
performance guarantees for SAT algorithms 

• Classical results: polynomial classes like Horn, 2CNF, etc.


• Gradual dependency on how “well structured” an instance is 

12
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Framework for Rigorous Models

• runtime guarantee should depend on  
and  
 
 
… but how?

k
|F |

13

k

|F |

instances
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First try: XP

• if  is a constant, then the runtime is 
polynomial 

• this doesn’t scale well in 


• such runtime guarantees are called XP

k

k

14

|F |f(k)
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Second Try: FPT

• parameter  contributes a constant 
factor to the polynomial runtime, without 
changing the order of the polynomial 

• allows a better scaling in 


• such runtime guarantees are called FPT or  
fixed-parameter tractable


• well-developed area of TCS 

k

k

15

f(k) ⋅ |F |O(1)
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Hardness Theory
• For showing that a problems is 

not FPT (conditionally)

17

XP

W[1]

W[2]

…

FPT

PTIME

para-NP
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FPT-SAT

18
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Parameterized Complexity

• For the causal approach, parameterized complexity provides 
and ideal framework


• We can develop different parameters that capture different 
properties of SAT instances


• Compare parameters by their generality

19
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FPT-SAT

20

F,k A

“SAT”

“UNSAT”

“p(F)>k”

“permissive” or “robust” approach

SAT
“SAT”

“UNSAT”
F,k Ver

explicit 
k-structure

two-phases approach

“p(F) ≤ k”
“p(F) > k”

“p(F) ≤ f(k)” FPT-approx
p(F) ≤ k
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Comparison of SAT-parameters

• General research program: come up with stronger and stronger 
parameters, and draw a detailed map of SAT-parameters and their 
mutual dominance

21

p dominates q if there is a function f such that 
                  for all F it holds that p(F) ≤ f(q(F))



Stefan Szeider /66

1) Graphical Structure 
2) Syntactical Structure 
3) Hybrid Parameters

22
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1) Graphical Structure

23
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Graphs for  F = {C1, …, C5}

C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x}, C5 = {x, y, z}

24

y

u

v

w

x

z

(a)

C2

C5

C4 C3

C1

(b)

C2
z

C5

x

C4
w

C3

v

C1

u

y

(c)

C2

C5

C4 C3

C1

(d)

C2

C5

C4 C3

C1

(e)

Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.
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Graphs for  F = {C1, …, C5}

C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x}, C5 = {x, y, z}

25

y

u

v

w

x

z

(a)

C2

C5

C4 C3

C1

(b)

C2
z

C5

x

C4
w

C3

v

C1

u

y

(c)

C2

C5

C4 C3

C1

(d)

C2

C5

C4 C3

C1

(e)

Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
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C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.

6

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

dual graphy

u

v

w

x

z

(a)

C2

C5

C4 C3

C1

(b)

C2
z

C5

x

C4
w

C3

v

C1

u

y

(c)

C2

C5

C4 C3

C1

(d)

C2

C5

C4 C3

C1

(e)

Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
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C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
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consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
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Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.

2

directed incidence graph 
or signed incidence graph

a.k.a. CVIG
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Graph Decompositions and Width Parms

• min width over all its tree decompositions


• checking  is FPT

tw(G) =

tw(G) ≤ k

27

Discrete Reasoning Methods 33
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Conditions: covering and connectedness.

6.3 Tree decomposition (more formally)

• Let G be a graph, T a tree, and � a labeling of the vertices of T by sets of vertices of G.

• We refer to the vertices of T as “nodes”, and we call the sets �(t) “bags”.

• The pair (T, �) is a tree decomposition of G if the following three conditions hold:

1. For every vertex v of G there exists a node t of T such that v 2 �(t).

2. For every edge vw of G there exists a node t of T such that v, w 2 �(t) (“covering”).

3. For any three nodes t1, t2, t3 of T , if t2 lies on the unique path from t1 to t3, then �(t1) \
�(t3) ✓ �(t2) (“connectedness”).

• The width of a tree decomposition (T, �) is defined as the maximum |�(t)| � 1 over all nodes t of
T .

• The treewidth tw(G) of a graph G is the minimum width over all its tree decompositions.

6.4 Basic Facts

• Trees have treewidth 1.

• Cycles have treewidth 2.

• The complete graph on n vertices has treewidth n � 1.

• If a graph G contains a clique Kr, then every tree decomposition of G contains a node t such that
Kr ✓ �(t) (Helly property of subtrees of trees).

6.5 Complexity of Treewidth

• Determining the treewidth of a graph is NP-hard.

• For every fixed k, one can check for a graph G in linear time whether tw(G)  k. (Bodlaender’s
Theorem)

a graph G
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Conditions: covering and connectedness.

6.3 Tree decomposition (more formally)

• Let G be a graph, T a tree, and � a labeling of the vertices of T by sets of vertices of G.

• We refer to the vertices of T as “nodes”, and we call the sets �(t) “bags”.

• The pair (T, �) is a tree decomposition of G if the following three conditions hold:

1. For every vertex v of G there exists a node t of T such that v 2 �(t).

2. For every edge vw of G there exists a node t of T such that v, w 2 �(t) (“covering”).

3. For any three nodes t1, t2, t3 of T , if t2 lies on the unique path from t1 to t3, then �(t1) \
�(t3) ✓ �(t2) (“connectedness”).

• The width of a tree decomposition (T, �) is defined as the maximum |�(t)| � 1 over all nodes t of
T .

• The treewidth tw(G) of a graph G is the minimum width over all its tree decompositions.

6.4 Basic Facts

• Trees have treewidth 1.

• Cycles have treewidth 2.

• The complete graph on n vertices has treewidth n � 1.

• If a graph G contains a clique Kr, then every tree decomposition of G contains a node t such that
Kr ✓ �(t) (Helly property of subtrees of trees).

6.5 Complexity of Treewidth

• Determining the treewidth of a graph is NP-hard.

• For every fixed k, one can check for a graph G in linear time whether tw(G)  k. (Bodlaender’s
Theorem)

a tree decomposition of G

width = size of largest bag -1  
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Treewidth of Formulas

• prim-tw(F), dual-tw(F), inc-tw(F), 
cons-tw(F), conf-tw(F)


• SAT is FPT parameterized by all 
the above parameters, except for 
confl-tw.

28

dual-twprim-tw

inc-tw

confl-tw

cons-tw

W[1]

FPT

Improvement of    for inc-tw using 
covering products [Slivovsky, Sz. SAT 2020]

O*(4k) ⇒ O*(2k)

https://doi.org/10.1007/978-3-030-51825-7_19
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Width 
Parameter Zoo

29

prim-tw

inc-tw

branch-width

dir-inc-cwd

inc-cwd

hypertree-width

FPT/FPT

FPT/XP

XP/paraNP

Ver/SAT

(also #SAT)dir-rank-wd

dual-tw

confl-tw

cons-tw
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Twin-width (tww)

30

3:6 É. Bonnet et al.

Fig. 3. Hasse diagram of classes on which FO model checking is FPT, with the newcomer twin-width. The
dash-do!ed edge means that polynomial expansion may well be included in bounded twin-width. Bounded
twin-width and nowhere dense classes roughly subsume all the current knowledge on the fixed-parameter
tractability of FO model checking. Do they admit a natural common superclass still admi!ing an FPT algo-
rithm for FO model checking?

Theorem 1.1. Given ann-vertex (di)graphG, a sequence ofd-contractionsG = Gn ,Gn−1, . . . ,G1 =
K1, and a !rst-order sentence φ, we can decide G |= φ in time f ( |φ |,d ) · n for some computable, yet
non-elementary, function f .

This uni&es and extends known FPT algorithms for
• H -minor free graphs [18],
• posets of bounded width (i.e., size of the largest antichain) [23],
• permutations avoiding a &xed pattern [30]1 and hereditary (that is, closed under taking in-

duced subgraphs) proper subclasses of permutation graphs,
• graphs of bounded rank-width or bounded clique-width [13],2

since we will establish that these classes have bounded twin-width, and that, on them, a sequence of
d-contractions can be found e'ciently. By transitivity, this also generalizes the FPT algorithm for
L-interval graphs [28], and may shed a new uni&ed light on geometric graph classes for which FO
model checking is FPT [31]. In that direction we show that a large class of geometric intersection
graphs with bounded clique number, including Kt -free unit d-dimensional ball graphs, admits
such an algorithm. We also show that map graphs have bounded twin-width but we only provide
a d-contraction sequence when the input comes with a planar embedding of the map. FO model
checking was proven FPT on map graphs even when no geometric embedding is provided [16].
See Figure 3 for the Hasse diagram of classes with a &xed-parameter tractable FO model checking.

Permutation patterns can be represented as posets of dimension 2. Any proper hereditary sub-
class of posets of dimension 2 contains all permutations avoiding a &xed pattern. In turn, posets
can be encoded by directed graphs (or digraphs), with an arc fromu tov ifu is smaller thanv . Thus
we formulated Theorem 1.1 with graphs and digraphs, to cover all the classes of bounded twin-
width listed after the theorem (in particular, permutations excluding a &xed pattern). Twin-width
and the applicability of Theorem 1.1 is actually broader: one may replace “an n-vertex (di)graph

1Guillemot and Marx show that Permutation Pattern (not FO model checking in general) is FPT when the host permuta-
tion avoids a pattern, then a win-win argument proper to Permutation Pattern allows them to achieve an FPT algorithm
for the class of all permutations.
2for this class, even deciding MSO1 is FPT, which is something that we do not capture.

Journal of the ACM, Vol. 69, No. 1, Article 3. Publication date: November 2021.

[Bonnet et al. JACM 2022]

https://doi.org/10.1145/3486655
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Twin-Width of Graphs
• Reduce a given Graph to a single vertex by a sequence of contractions.


• Each contraction removes a vertex  by contracting it to one of the remaining vertices . In symbols 
.


• If  are twins, then the contraction is perfect.


• if  are not twins, record the error by coloring edges red. 


• red edges remain red in subsequent steps

u v
u ↝ v

u, v

u, v

31

u

v

a
b
c
d

u ↝ v
v

a

b
c
d
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Twin-width of Graphs

• A d-contraction sequence of a graph contracts all vertices 
step-by-step to a single vertex graph, such that each 
intermediate graph has red degree at most d.


• 


• The twin-width of a graph is the smallest d such that it admits 
a d-contraction sequence.

G = Gn ↝ Gn−1 ↝ Gn−2 ↝ ⋯ ↝ G1

32
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TWW in 
relationship to 
other parameters

33

prim-tw

inc-tw

branch-width

dir-inc-cwd

inc-cwd

hypertree-width

FPT/FPT

FPT/XP

XP/paraNP

Ver/SAT

(also #SAT)dir-rank-wd

dual-tw

confl-tw

cons-tw

dir-inc-tww

inc-tww

If  we add as additional 
parameter the number 
of variables set to true, 

then  even #SAT 
becomes FPT 

[Ganian, et al. SAT 2022]

https://doi.org/10.4230/LIPIcs.SAT.2022.15
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2) Syntactic Structure

34
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Tractable Classes or Islands of Tractability

35

Parameterized by the 
distance to a class 

where the class is 
syntactical defined  

easy
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Distance = size of smallest backdoor set

• Fix a base class C (e.g., Horn)


• B is a strong C-backdoor of F if for all 
assignments  we have 

C.


•  is obtained from F by removing 
clauses from F which contain a literal 
that t sets to 1, and removing from the 
remaining clauses all literals that  sets 
to 0.

t : B → {0,1}
F[t] ∈

F[t]

t

36

F

2k

x=0 x=1

y=0 y=0y=1 y=1

z=0 z=1 z=0 z=1 z=0 z=1 z=0 z=1

∈C ∈C ∈C ∈C ∈C ∈C ∈C ∈C

strong

B = {x, y, z}
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Syntactic Base Classes
• Horn: each clause contains at most one positive literal


• dual Horn: each clause contains at most one negative 
literal


• 2CNF (or Krom): each clause contains at most 2 literals


• RHorn: can be made Horn by consistently flipping 
literals


• QHorn: there exists a function  
such that  and  for all 

clauses C of F.

v : var(F) → [0,1]
v(x) + v(x) = 1 ∑

x∈C

v(x) ≤ 1

37

QHorn

RHorn

Horn dHorn

2CNF

⊂

⊂⊂

⊂
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Other base classes
• HIT: any two clauses of the forma contain a 

complementary pair of literals


• CLU: variable-disjoint union of HIT formulas


• W[t]: formulas of incidence treewidth at 
most t.


• From base classes C and D we can form 


• the heterogeneous base class C ∪ D and


• the scattered base class C ⊕ D

38

F

∈Horn ∈2CNF ∈2CNF ∈Horn

heterogeneous base classes

A hitting formula is 
unsatisfiable if 

∑
C∈F

2−|C| = 1

x=0 x=1
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Backdoor Parameter Zoo

39

Horn-bd dHorn-bd 2CNF-bd

dHorn ⋃ 2CNF-bdHorn ⋃ 2CNF-bd

Horn ⋃ dHorn-bd

Horn ⋃ dHorn ⋃ 2CNF-bd RHorn-bd

QHorn-bd

FPT

W[2]-hard
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Deletion backdoor sets
• B is a deletion backdoor if .


• Instead of looking at all partial assignments 
we delete the backdoor variables from F 

(notation ).


• Fact: if  is clause-induced ( ) 
then each deletion backdoor set is also a backdoor set 
(but not necessarily the other way around).

F − B ∈ C

t : B → {0,1}
F − B

C F′ ⊆ F, F ∈ C ⇒ F′ ∈ C

40
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Deletion Backdoor Sets

41

Horn-bd dHorn-bd 2CNF-bd

dHorn⋃2CNF-bdHorn⋃2CNF-bd

Horn⋃dHorn-bd

Horn⋃dHorn⋃2CNF-bdRHorn-bd

QHorn-bd

FPT

W[2]-hard

deletion-QHorn-bd
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Avoid the 2k assignments: Backdoor Trees

• smallest backdoor sets ≠ 
backdoor trees with 
smallest number of leaves!


• subset-minimal  backdoor 
sets ≠ backdoor trees with 
smallest number of leaves

42

F

2k

F

k + 1

Finding backdoor trees with k leaves is 
FPT for Horn, dHorn, and 2CNF

even heterogeneous base 
class Horn ∪ 2CNF

size of backdoor 
tree = number of 

leaves

[Samer, Sz. AAAI 2008], [Ordyniak, Schidler, Sz. ĲCAI 2021]

https://cdn.aaai.org/AAAI/2008/AAAI08-057.pdf
https://doi.org/10.24963/ijcai.2021/194
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Avoid the 2k assignments: Backdoor DNFs

• Partial assignments at the 
leaves of a backdoor tree 
give rise to a DNF.


• The DNF is a tautology.

43

F
x = 0 x = 1

y = 0 y = 1

z = 0 z = 1

[x]

[x ∧ y]

[x ∧ y ∧ z] [x ∧ y ∧ z]

[x] ∨ [x ∧ y] ∨ [x ∧ y ∧ z] ∨ [x ∧ y ∧ z]
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Avoid the 2k assignments: Backdoor DNFs
• Partial assignments at the leaves of a backdoor tree give rise to a DNF


• The DNF is a tautology


• Backdoor DNF: take any such tautological DNF


• Backdoor DNFs are more succinct than backdoor trees

44

Finding backdoor DNFs with k terms is 
FPT for Horn, dHorn, and 2CNF

one can even mix Horn with 2CNF  
(or dHorn with 2CNF)

bd-set bd-tree bd-DNF

DNF

[Ordyniak, Sz. ĲCAI 2021]
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Backdoor Depth

45
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Component backdoor trees

• backdoor depth: smallest depth of any component backdoor tree


• for fixed depth, number of variables in the backdoor is unbounded!

46

component nodes (red) 
split instance into 

connected components.

F

[Mählmann, Siebertz, Vigny, MFCS 2021]

https://doi.org/10.4230/LIPIcs.MFCS.2021.73
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Component backdoor Trees
• Backdoor depth is significantly better 

parameter than backdoor size or number of 
backdoor tree leaves 


• Definition motivated by tree-depth [Nesetril, 
Ossona de Mendez 2006]


• Once we have a component backdoor tree 
that witnesses the backdoor depth of a given 
instance, we can decide the instance quickly


• Algorithmically challenging problem: find a 
component backdoor tree of small depth

47

AND

OR

I
OR

OR OR

AND
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FPT-approximating backdoor depth
• FPT approximation for base class NULL [Mählmann, 

Siebertz, Vigny, MFCS 2021]


• FPT approximation for the base classes Horn and 2CNF 
[Dreier, Ordyniak, Sz. ESA 2022]


• starting point: obstruction trees from  Mählmann et al. 


• Separator obstructions can separate obstruction trees 
containing an unbounded number of variables from all 
potential future obstruction trees.


• Use game theoretic framework for specifying the 
algorithm

48

https://doi.org/10.4230/LIPIcs.MFCS.2021.73
https://doi.org/10.4230/LIPIcs.MFCS.2021.73
https://doi.org/10.4230/LIPIcs.MFCS.2021.73
https://doi.org/10.4230/LIPIcs.MFCS.2021.73
https://doi.org/10.4230/LIPIcs.ESA.2022.46
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Comparison Summary

49

C-bd-size D-bd-size

C∪D-bd-size C⊕D-bd-sizeC-bd-depth D-bd-depth

C=2CNF, D=Horn
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What’s next?

50

C-bd-size D-bd-size

C∪D-bd-size C⊕D-bd-sizeC-bd-depth D-bd-depth

C∪D-bd-depth=C⊕D-bd-depth 

FPT?

C=2CNF, D=Horn
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3) Hybrid parameters

51
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Hybrid parameters

52

tw(nxn grid)=Ω(n) 
Horn-backdoor=0

tw(n-tree)=1 
Horn-backdoor=Ω(n)

INCOMPARABLE
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(A) Backdoors into bounded treewidth

• deletion backdoors are not interesting, 
but strong backdoors are!

53

For each constant t, TW[t]-backdoor 
detection is FPT-approx. 

F

TW[t]

TW[t] = {F | tw(I(F)) ≤ t } 
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(B) backdoor treewidth

• C-backdoor treewidth is the minimum 
treewidth over the torso graphs of all the C-
backdoors.


• C-backdoor treewidth  
  ≤ min{ primal treewidth, C-backdoor size}

54

C C C

backdoor

torso graph

C-backdoor treewidth is FPT 
for C ∈ {Horn,dHorn,2CNF}
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Parameter Zoo

55

Horn-bd dHorn-bd 2CNF-bd prim-tw

inc-tw

dir-inc-cwd

dual-tw

2CNF-bd-twdHorn-bd-twHorn-bd-tw

TW[1]-bd

TW[2]-bd

TW[3]-bd

TW[t]-bd

…
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Resolution Complexity

56
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Resolution: proofs of unsatisfiability 
• To certify that a formula is satisfiable, just provide a satisfying assignment


• To certify that a formula is unsatisfiable, we need a proof.


• There are many proof systems, resolution is the most fundamental one.


• Idea: consider all clauses of the input formula as axioms.


• From two clauses already obtained and they contain a pair of closing literals, obtain their resolvent as new clause.


• When you derive the empty clause, you can stop.

57

{u, v, w} {x, y, u}

{v, w, x, y}

T. Peitl and S. Szeider Discrete Applied Mathematics 337 (2023) 173–184

Fig. 2. A shortest resolution refutation of the formula F2
5 from Example 3 (axioms highlighted).

Fig. 3. A shortest resolution refutation of the formula G from Example 4 (axioms highlighted).

Finally, we arrive at the statement that we will actually use in our encoding to prune the search spaces by asserting
certain kinds of refutations do not exist for strongly irreducible minimally unsatisfiable formulas.

Lemma 4. Let F be a strongly irreducible minimally unsatisfiable formula with more than 2 clauses, let P be a resolution
refutation of F . Let C,D 2 F be two axioms that are resolved together in P. Then at least one of C,D is used at least once more
in P.

Proof. {C,D} ( F is not unsatisfiable, because F is minimally unsatisfiable. Hence P continues beyond the resolution of C
and D. If neither C nor D is used another time, then the resolvent of C and D is a clause interpolant for ({C,D}, F \ {C,D}),
contradicting F ’s strong irreducibility. ⇤

Kleine Büning and Zhao [13] studied read-once refutations for minimally unsatisfiable formulas—ones in which every
clause is only used once. Lemma 4 has implications for the existence of read-once refutations for strongly irreducible
formulas.

Corollary 4. Strongly irreducible minimally unsatisfiable formulas with more than 2 clauses do not have read-once refutations.

Example 3. Corollary 4 is in a sense tight, because there are strongly irreducible formulas with refutations where only
a single axiom is read twice and everything else only once. An example is the formula

F
2
5 = {{x1, x2}, {x2, x3}, {x3, x1}, {x1, x2, x3}, {x1, x2, x3}},

known to have hardness 10 by [24], with a shortest refutation shown in Fig. 2.

One could ask whether the decomposition refutation from Lemma 2 is optimal. This is not the case, as witnessed by
the following example.

Example 4. Let F = {{x, y, z}, {x, y, z}, {x, y, e}, {x, y, e}, {x, z, e}, {x, z, e}, {y, z, e}, {y, z, e} }. F is the formula F4,8,52
from [24] and so is known to have hardness 19. Now, consider G obtained from F by replacing the clause {x, z, e} with
the clauses {x, y, z, e} and {x, y, z, e}. Clearly, G is reducible: the two new clauses are a factor, whose basis is the replaced
clause. If the decomposition refutation were optimal, the hardness of G would have been 3 + h(F ) � 1 = 21. But G has a
refutation of length 20 (see Fig. 3).

Thus concludes our tour of irreducibility and its strong cousin. In the following subsection, we show that asymptotic
resolution hardness of hitting formulas is decided on irreducible formulas—if they have polynomial-size resolution
refutations, so do all unsatisfiable hitting formulas. Then, in Section 6.1, we employ strong irreducibility to improve the
computation of shortest refutations.

178
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Resolution and SAT-solvers

• Fact: a formula is unsatisfiable if and only if it has a resolution 
proof


• DAG-like resolution is exponentially more succinct then tree-
like resolution


• CDCL SAT solver runs on unsatisfiable formulas can be 
interpreted as dag-like resolution proofs. 

58
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Resolution and FPT algorithms

59

parameters for 
which SAT is FPT

Parameters for 
which FPT-size 

resolution proofs 
exist

= parameters 
where a SAT 

solver can have 
FPT running 

time
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Resolution complexity by Treewidth

• Interesting open case is the resolution complexity of HIT


•  [Peitl-Sz DAM 2023]

60

prim-tw

inc-tw

dual-twinc-pw

triv[Imanishi
 WALCOM 2017]

in XP [Imanishi]
FPT after preprocessing 
[Samer, Sz. JCSS 2010]

http://dx.doi.org/10.1016/j.dam.2023.05.003
https://doi.org/10.1007/978-3-319-53925-6_28
https://doi.org/10.1007/978-3-319-53925-6_28
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Summary

• FPT-SAT: over last 20 years, evolved 
into a rich research area


• Many new developments, including 
backdoor depth, bd-tw, twin-
width,…


• Incomparable top elements of FPT-
parameters - quest for unification 

61

p1, p2, p3, … pr

pnew
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Some Challenges
• backdoor depth for heterogeneous/scattered Horn  Krom


• FPT-size resolution for incidence treewidth


• resolution complexity of hitting formulas


• revisit hardness results for backdoors, avoid exact 
recognition (flow augmentation)


• Revisit FPT #SAT results from Knowledge Compilation 
Perspective

∪

62
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Handbook of Satisfiability, 2nd Edition, 2021

63

Extended and revised chapter 17 
“Fixed-parameter Tractability”

http://www.ac.tuwien.ac.at/files/tr/ac-tr-21-004.pdf

http://www.ac.tuwien.ac.at/files/tr/ac-tr-21-004.pdf
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