
Stefan Szeider

The Parameterized
Complexity of SAT

Boolean Seminar
Liblice, Sept 2023

https://www.ac.tuwien.ac.at/people/szeider/

Stefan Szeider /662

On Fixed-Parameter Tractable
Parameterizations of SAT

Stefan Szeider!

Department of Computer Science, University of Toronto,
M5S 3G4 Toronto, Ontario, Canada

szeider@cs.toronto.edu

Abstract. We survey and compare parameterizations of the propo-
sitional satisfiability problem (SAT) in the framework of Parameter-
ized Complexity (Downey and Fellows, 1999). In particular, we consider
(a) parameters based on structural graph decompositions (tree-width,
branch-width, and clique-width), (b) a parameter emerging from match-
ing theory (maximum deficiency), and (c) a parameter defined by trans-
lating clause-sets into certain implicational formulas (falsum number).

1 Introduction

The framework of Parameterized Complexity, introduced by Downey and Fellows
[12], provides a means for coping with computational hard problems: It turned
out that many intractable (and even undecidable) problems can be solved effi-
ciently “by the slice”, that is, in time O(f(k) · nα) where f is any function of
some parameter k, n is the size of the instance, and α is a constant independent
from k. In this case the problem is called fixed-parameter tractable (FPT). If a
problem is FPT, then instances of large size can be solved efficiently.

The objective of this paper is to survey and compare known results for fixed-
parameter tractable SAT decision. Although the SAT problem has been con-
sidered in more general works on parameterized complexity (e.g., [9]) and FPT
results have been obtained focusing on a single parameterization of SAT (e.g.,
[2, 18]), it appears that no broader approach has been devoted to this subject.

We suggest the following concept of fixed-parameter tractability for SAT.
Consider a parameter π for clause-sets; i.e., π is a function which assigns some
non-negative integer π(F) to any given clause-set F . We say that “satisfiability of
clause-sets with bounded π is fixed-parameter tractable” if there is an algorithm
which answers correctly for given clause-sets F and k ≥ 0

“F is satisfiable” or “F is unsatisfiable” or “π(F) > k”

in time O(f(k) · lα); here l denotes the length (i.e., sum of clause widths) of F , f
is any function, and α is a constant independent from k. (Being aware of the phe-
nomenon of so-called “robust algorithms” [27, 13], we do not require (i) that the
! Supported by the Austrian Science Fund (FWF) projects J2111 and J2295.

E. Giunchiglia and A. Tacchella (Eds.): SAT 2003, LNCS 2919, pp. 188–202, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On Fixed-Parameter Tractable
Parameterizations of SAT

Stefan Szeider!

Department of Computer Science, University of Toronto,
M5S 3G4 Toronto, Ontario, Canada

szeider@cs.toronto.edu

Abstract. We survey and compare parameterizations of the propo-
sitional satisfiability problem (SAT) in the framework of Parameter-
ized Complexity (Downey and Fellows, 1999). In particular, we consider
(a) parameters based on structural graph decompositions (tree-width,
branch-width, and clique-width), (b) a parameter emerging from match-
ing theory (maximum deficiency), and (c) a parameter defined by trans-
lating clause-sets into certain implicational formulas (falsum number).

1 Introduction

The framework of Parameterized Complexity, introduced by Downey and Fellows
[12], provides a means for coping with computational hard problems: It turned
out that many intractable (and even undecidable) problems can be solved effi-
ciently “by the slice”, that is, in time O(f(k) · nα) where f is any function of
some parameter k, n is the size of the instance, and α is a constant independent
from k. In this case the problem is called fixed-parameter tractable (FPT). If a
problem is FPT, then instances of large size can be solved efficiently.

The objective of this paper is to survey and compare known results for fixed-
parameter tractable SAT decision. Although the SAT problem has been con-
sidered in more general works on parameterized complexity (e.g., [9]) and FPT
results have been obtained focusing on a single parameterization of SAT (e.g.,
[2, 18]), it appears that no broader approach has been devoted to this subject.

We suggest the following concept of fixed-parameter tractability for SAT.
Consider a parameter π for clause-sets; i.e., π is a function which assigns some
non-negative integer π(F) to any given clause-set F . We say that “satisfiability of
clause-sets with bounded π is fixed-parameter tractable” if there is an algorithm
which answers correctly for given clause-sets F and k ≥ 0

“F is satisfiable” or “F is unsatisfiable” or “π(F) > k”

in time O(f(k) · lα); here l denotes the length (i.e., sum of clause widths) of F , f
is any function, and α is a constant independent from k. (Being aware of the phe-
nomenon of so-called “robust algorithms” [27, 13], we do not require (i) that the
! Supported by the Austrian Science Fund (FWF) projects J2111 and J2295.

E. Giunchiglia and A. Tacchella (Eds.): SAT 2003, LNCS 2919, pp. 188–202, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

20
 y

ea
rs

 a
go

!

Stefan Szeider /66

Purpose of Talk
• Briefly discuss background SAT theory vs SAT practice

• Outline the parameterized complexity framework

• Discuss ways of parametrising SAT (decompositions,
backdoors, hybrid parameters)

• Focus on more recent progress (tww, bd depth, bd tw)

• Not a technical talk, rather give a general picture and discuss
what questions can be asked

3

Stefan Szeider /66

Propositional satisfiability (SAT)
• SAT (or CNF-SAT) is the following problem:

• Instance: a propositional formula in conjunctive normal form

• Question: is the formula satisfiable?

4

satisfied by setting  

define literal, clause, occurrence, truth assignment, applying partial assignment

F = {C1, …, C5}

C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x}, C5 = {x, y, z}

y = 1,u = 0,v = 1,x = 0

F[t]

Stefan Szeider /64

TAOCP
• Donald E Knuth wrote a 300+ page chapter on SAT in his TAOCP.

5

“The story of satisfiability is the tale of a
triumph of software engineering, blended
with rich doses of beautiful mathematics.”

Berkeley, April 2023

Stefan Szeider /66

Classical 3SAT Time Bounds—SAT is hard

• For that exceeds the number of nano seconds that passed since the big bang!n = 250

6

2n

1.3333n

1.3302n

1.3290n

1.3280n

1.324n

 trivial

 1999 (Schöning)

2002

 2003

2003

 2010 (Hertli)

3SAT time bounds

Exponential Time Hypothesis (ETH)
 [Impagliazzo, Paturi & Zane 2001]

no sub exponential time
algorithm for 3SAT

Stefan Szeider /66

CDCL SAT solvers—SAT is easy

• Conflict-driven Clause Learning solvers emerged around the
millennium

• Orders of magnitude faster than previous algorithms

• Today solve industrial instances with millions of variables and
clauses routinely

• Continuous progress in solving, encoding, certifying,
quantifying, counting, optimizing

7

Stefan Szeider /66

• The Pre-Revolution (< 2000)

• DPLL 1960s, Variable selection heuristics 1990s, DIMACS SAT Challenges

• The Revolution (≈ 2000)

• Solvers GRASP, Chaff, Conflict-driven Clause learning (CDCL), Watched Literal data
structure, etc

• The Evolution (> 2000)

• Efficient encodings, incremental solving, in/preprocessing, parallelization, proofs, cube and
conquer, open source

8

THE PROPOSITIONAL SAT ISFIABILITY problem (SAT)
was the first to be shown NP-complete by Cook and
Levin. SAT remained the embodiment of theoretical
worst-case hardness. However, in stark contrast to its
theoretical hardness, SAT has emerged as a central
target problem for efficiently solving a wide variety
of computational problems. SAT solving technology
has continuously advanced since a breakthrough
around the millennium, which catapulted practical
SAT solving ahead by orders of magnitudes. Today,
the many flavors of SAT technology can be found in all
areas of technological innovation.

SAT asks whether a given propositional formula is
satisfiable. That is, can we set the formula’s variables
to values 1 (True) or 0 (False) in such a way that the
entire formula evaluates to 1? F = (x1 Ú x2 Ú x3) Ù
(¬x1 Ú ¬x2 Ú ¬x3) Ù (¬x1 Ú x2) Ù (x2 Ú x3) is a simple
propositional formula in conjunctive normal form
(CNF), where x1, x2, and x3 are propositional variables

and Ú, Ù, and ¬ refer to the logical opera-
tors OR (disjunction), AND (conjunc-
tion), and NOT (negation), respectively.
A variable xi or a negated variable ¬xi is a
literal, and a disjunction of literals is a
clause. So, the above formula F is a con-
junction of four clauses. The formula is
satisfiable; we can satisfy it by the truth
assignment that sets x1 and x2 to 1, and
x3 to 0: the first, third, and fourth clauses
are satisfied by x2 = 1 because the clauses
contain x2. The second clause is satis-
fied by x3 = 0 because it contains ¬x3. In
consequence, all clauses are satisfied. A
truth assignment naturally extends
from variables to literals by setting ¬x to
the opposite value of x. Hence, a formu-
la is satisfiable if and only if there is a
truth assignment that sets at least one
literal in each clause to 1.

Example 1 shows a larger formula
that is unsatisfiable—that is, not satis-
fied by any assignment. The focus on
CNF formulas is not a restriction. The
so-called Tseitin transformation39 ef-
ficiently transforms any propositional
formula into CNF without affecting its
satisfiability.

At first glance, the SAT problem
looks inconspicuous since it is simple
to state, does not look difficult to solve,
and seems uninteresting for practi-
cal purposes. Still, Stephen Cook7 and
Leonid Levin29 showed independently
in the 1970s that SAT is NP-complete,
making it the first NP-complete prob-
lem. So, suppose one could solve SAT in
polynomial time on arbitrary input. In

The Silent
(R)evolution
of SAT

DOI:10.1145/3560469

Today’s powerful, robust SAT solvers have
become primary tools for solving hard
computational problems.

BY JOHANNES K. FICHTE, DANIEL LE BERRE,
MARKUS HECHER, AND STEFAN SZEIDER

 key insights
 ! Propositional Satisfiability (SAT) has

been a cornerstone of computational
complexity theory; now, it has become a
central target problem for solving hard
computational problems in practice.

 ! Since the revolution in SAT solving for
decision problems that took place around
the millennium, significant efficiency
improvements have been achieved, and
new methods for certification and trust
have been added.

 ! Over the last 10 years, SAT further
evolved by broadening its applications,
including optimization, counting, and
even problems involving quantifiers.

64 COMMUNICATIONS OF THE ACM | JUNE 2023 | VOL. 66 | NO. 6

contributed articles

I
M

A
G

E
 B

Y
 I

G
O

R
 K

I
S

S
E

L
E

V

22. Heule, M.J.H. and Kullmann, O. The science of brute
force. Communications of the ACM 60, 8 (July 2017),
70–79.

23. Hoos, H.H. and Stützle, T. Towards a characterisation
of the behaviour of stochastic local search algorithms
for SAT. Artificial Intelligence 112, 1 (1999), 213–232.

24. Ignatiev, A. et al. Reasoning-based learning of
interpretable ML models. In Proceedings of the 30th
Intern. Joint Conf. on Artificial Intelligence, Zhi-Hua
Zhou (Ed.), (August 2021), 4458–4465.

25. Ignatiev, A., Morgado, A., and Marques-Silva, J. PySAT:
A Python toolkit for prototyping with SAT oracles. In
Proceedings of the 21st Intern. Conf. on Theory and
Applications of Satisfiability Testing (Lecture Notes
in Computer Science 10929), O. Beyersdorff and C.M.
Wintersteiger (Eds.). Springer Verlag (2018), 428–437.

26. Järvisalo, M. et al. The International SAT Solver
Competitions. AI Magazine. The AAAI Press (2012).

27. Katebi, H., Sakallah, K.A., and Marques-Silva, J.P.
Empirical study of the anatomy of modern SAT
solvers. In Proceedings of the 14th Intern. Conf. on
Theory and Applications of Satisfiability Testing
(Lecture Notes in Computer Science 6695), K.A.
Sakallah and L. Simon (Eds.). Springer Verlag (2011),
343–356.

28. Knuth, D.E. The Art of Computer Programming Vol.
4B, Combinatorial Algorithms, Part 2. Addison-Wesley
(2023).

29. Levin, L. Universal sequential search problems.
Problems of Information Transmission 9, 3 (1973),
265—266.

30. Malik, S. and Zhang, L. Boolean satisfiability
from theoretical hardness to practical success.
Communications of the ACM 52, 8 (August 2009),
76–82.

31. Marques-Silva, J. and Sakallah, K.A. GRASP: A search
algorithm for propositional satisfiability. IEEE Trans.
Comput. 48, 5 (May 1999), 506–521.

32. Moskewicz, M.W. et al. Chaff: Engineering an efficient
SAT solver. In Proceedings of the 38th Annual Design
Automation Conf., J. Rabaey (Ed.). Association for
Computing Machinery (2001), 530–535.

33. Peitl, T., Slivovsky, F., and Szeider, S. Dependency
learning for QBF. J. Artificial Intelligence Research 65
(2019), 180–208.

34. Pipatsrisawat, K. and Darwiche, A. On the power of
clause-learning SAT solvers as resolution engines.
Artificial Intelligence 175, 2 (2011), 512–525.

35. Ramaswamy, V.P. and Szeider, S. Turbocharging
treewidth-bounded Bayesian network structure
learning. In Proceedings of the 35th AAAI Conf. on
Artificial Intelligence, The AAAI Press (2021), 3895–
3903.

36. Rossi, F., van Beek, P., and Walsh, T. Handbook of
Constraint Programming. Elsevier Science Publishers,
North-Holland, USA (2006).

37. Sinz, C. Towards an optimal CNF encoding of Boolean
cardinality constraints. In Proceedings of the 11th
Intern. Conf. on Principles and Practice of Constraint
Programming (Lecture Notes in Computer Science
3709), P. van Beek (Ed.). Springer Verlag, Sitges, Spain
(2005), 827– 831.

38. Stuckey, P.J. et al. The MiniZinc Challenge 2008–2013.
AI Magazine 35, 2 (June 2014), 55–60.

39. Tseytin, G.S. On the complexity of derivation in
propositional calculus. Automation of Reasoning:
Classical Papers in Computational Logic 2 (1983),
466–483.

40. Vardi, M.Y. Boolean satisfiability: Theory and
engineering. Communications of the ACM 57, 3 (March
2014), 5.

Johannes K. Fichte is an associate professor at IDA,
Institutionen för datavetenskap, Linköping University,
Sweden.

Daniel Le Berre is a professor at Artois University and
CNRS, Centre de Recherche en Informatique de Lens,
France.

Markus Hecher (hecher@mit.edu) is a PostDoc at the
Computer Science & Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, USA.

Stefan Szeider is a professor and head of the Algorithms
and Complexity Group at TU Wien, Vienna, Austria.

to as core-guided optimization. Notably,
core-guided optimization is very suc-
cessful when solving problems such as
MaxSAT, the problem of maximizing
the number of satisfied clauses (Propo-
sitional Problems sidebar). Example 8
describes the use of soft clauses on our
running example, which is the basis for
MaxSAT. A popular approach for Max-
SAT solving uses as a subroutine the
computation of a minimal hitting set
on unsatisfiable cores, usually achieved
using a Mixed-Integer Programming
(MIP) solver.

Outlook
Over the last two decades, SAT solving
techniques have changed how we tackle
hard computational problems. The SAT
revolution is significantly less known
than the celebrated success of machine
learning with its ubiquitous and widely
reported impact on technology and so-
ciety. SAT solvers have influenced mod-
ern technology more silently. They are
used in computational biology,20 for
planning,4 to verify modern hardware,4
operating systems, software,4 and even
mathematical statements.4 This makes
SAT crucial to the progress of modern
information technology. Still, critical
Computer Science challenges related to
SAT solving are still ahead: How can we
further improve parallel search to take
full advantage of modern massively par-
allel hardware? Why does SAT solving
often work so well in practice, and what
characterizes the cases where it strug-
gles? How can we improve the process
of coming up with good encodings? Fi-
nally, will SAT be widely applied also to
computational physics, chemistry, or
non-symbolic AI? To some extent, the
revolutions of SAT and machine learn-
ing are complementary. There is much
potential in combining the two.

Acknowledgments
This work was carried out while the

authors visited the Simons Institute for
the Theory of Computing. It has been
supported by a Google Fellowship at
the Simons Institute; the Austrian Sci-
ence Fund (FWF); Grants J4656, Y698,
and P32830; and the Vienna Science
and Technology Fund, Grant WWTF
ICT19-065.

References
1. Abate, P. et al. Dependency solving: A separate

concern in component evolution management. J.
Systems and Software 85, 10 (2012), 2228–2240.

2. Ansótegui, C. et al. Community structure in industrial
SAT instances. J. Artificial Intelligence Research 66
(2019), 443–472.

3. Atserias, A., Fichte, J.K., and Thurley, M. Clause-
learning algorithms with many restarts and bounded-
width resolution. J. Artificial Intelligence Research 40,
1 (2011), 353–373.

4. A. Biere, M. Heule, H. van Maaren, and T. Walsh, (Eds.).
Handbook of Satisfiability (2nd Edition). IOS Press,
Amsterdam, Netherlands (2021).

5. Bradley, A.R. SAT-based model checking without
unrolling. In Verification, Model Checking, and
Abstract Interpretation–12th Intern. Conf. Proceedings
(Lecture Notes in Computer Science 6538), R. Jhala
and D.A. Schmidt (Eds.). Springer (January 2011),
70–87.

6. Bryant, R.E. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions in
Computing C-35, 8 (August 1986), 677–691.

7. Cook, S.A. The complexity of theorem-proving
procedures. In Proceedings of the 3rd Annual Symp. on
Theory of Computing, ACM (1971), M.A. Harrison, R.B.
Banerji, and J.D. Ullman (Eds.) 151–158.

8. Cook, S.A. and Mitchell, D.G. Finding hard instances
of satisfiability problem: A survey. DIMACS Series
in Discrete Mathematics and Theoretical Computer
Science 5 (1997).

9. Darwiche, A. Three modern roles for logic in AI. In
Proceedings of the 39th ACM SIGMOD-SIGACT-
SIGAI Symp. on Principles of Database Systems
(2020), 229–243.

10. Darwiche, A. and Marquis, P. A knowledge compilation
map. J. Artificial Intelligence Research 17, 1 (2002),
229–264.

11. Davis, M., Logemann, G., and Loveland, D. A machine
program for theorem-proving. Communications of the
ACM 5, 7 (July 1962), 394–397.

12. Davis, M. and Putnam, H. A computing procedure
for quantification theory. J. of the ACM 7, 3 (1960),
201–215.

13. Eén, N. and Sörensson, N. An extensible SAT-solver.
In Proceedings of the 6th Intern. Conf. on Theory and
Applications of Satisfiability Testing, E. Giunchiglia and
A. Tacchella (Eds.), Springer Verlag (2003), 502–518.

14. Elffers, J. et al. Seeking practical CDCL insights from
theoretical SAT benchmarks. In Proceedings of the
27th Intern. Joint Conf. on Artificial Intelligence, J.
Lang (Ed.), (2018), 1300–1308.

15. Fichte, J.K., Hecher, M., and Hamiti, F. The model
counting competition 2020. ACM J. Experimental
Algorithmics 26, 13 (December 2021).

16. Fichte, J.K., Hecher, M., and Szeider, S. A time leap
challenge for SAT-solving. In Proceedings of the 26th
Intern. Conf. on Principles and Practice of Constraint
Programming, H.Simonis (Ed.). Springer Verlag,
Louvain-la-Neuve, Belgium (2020), 267–285.

17. Fichte, J.K., Hecher, M., and Zisser, M. An improved
GPU-based SAT model counter. In Proceedings of
the 25th Intern. Conf. on Principles and Practice of
Constraint Programming, T. Schiex and S. de Givry
(Eds.), (2019), 491–509.

18. Ganesh, V. and Vardi, M.Y. Beyond the Worst-Case
Analysis of Algorithms. Cambridge University Press,
(2021), 547–566.

19. Gebser, M. et al. Answer Set Solving in Practice.
Morgan & Claypool (2012).

20. Guerra, J. and Lynce, I. Reasoning over biological
networks using maximum satisfiability. In Proceedings
of the 18th Intern. Conf. Principles and Practice of
Constraint Programming (Lecture Notes in Computer
Science 7514), M. Milano (Ed.). Springer Verlag,
Québec City, QC, Canada (2012), 941–956.

21. Hamadi, Y. and Sais, L. (Eds.). Handbook of Parallel
Constraint Reasoning. Springer (2018).

This work is licensed under a Creative
Commons Attribution-NonCommercial-

NoDerivs International 4.0 License

Example 8. Soft clauses allow us to deal
with inconsistent requirements.

Recall Example 6, where we introduced
an assumption on clause c17. Instead, we
could also declare clause c17 a soft clause
that should be satisfied if possible, not
mandatorily. From our example, we can
see that this clause cannot be satisfied, as
the entire formula with c17 is unsatisfiable.

72 COMMUNICATIONS OF THE ACM | JUNE 2023 | VOL. 66 | NO. 6

contributed articles

THE PROPOSIT IONAL S ATI SFI A B ILITY problem (SAT)
was the first to be shown NP-complete by Cook and
Levin. SAT remained the embodiment of theoretical
worst-case hardness. However, in stark contrast to its
theoretical hardness, SAT has emerged as a central
target problem for efficiently solving a wide variety
of computational problems. SAT solving technology
has continuously advanced since a breakthrough
around the millennium, which catapulted practical
SAT solving ahead by orders of magnitudes. Today,
the many flavors of SAT technology can be found in all
areas of technological innovation.

SAT asks whether a given propositional formula is
satisfiable. That is, can we set the formula’s variables
to values 1 (True) or 0 (False) in such a way that the
entire formula evaluates to 1? F = (x1 Ú x2 Ú x3) Ù
(¬x1 Ú ¬x2 Ú ¬x3) Ù (¬x1 Ú x2) Ù (x2 Ú x3) is a simple
propositional formula in conjunctive normal form
(CNF), where x1, x2, and x3 are propositional variables

and Ú, Ù, and ¬ refer to the logical opera-
tors OR (disjunction), AND (conjunc-
tion), and NOT (negation), respectively.
A variable xi or a negated variable ¬xi is a
literal, and a disjunction of literals is a
clause. So, the above formula F is a con-
junction of four clauses. The formula is
satisfiable; we can satisfy it by the truth
assignment that sets x1 and x2 to 1, and
x3 to 0: the first, third, and fourth clauses
are satisfied by x2 = 1 because the clauses
contain x2. The second clause is satis-
fied by x3 = 0 because it contains ¬x3. In
consequence, all clauses are satisfied. A
truth assignment naturally extends
from variables to literals by setting ¬x to
the opposite value of x. Hence, a formu-
la is satisfiable if and only if there is a
truth assignment that sets at least one
literal in each clause to 1.

Example 1 shows a larger formula
that is unsatisfiable—that is, not satis-
fied by any assignment. The focus on
CNF formulas is not a restriction. The
so-called Tseitin transformation39 ef-
ficiently transforms any propositional
formula into CNF without affecting its
satisfiability.

At first glance, the SAT problem
looks inconspicuous since it is simple
to state, does not look difficult to solve,
and seems uninteresting for practi-
cal purposes. Still, Stephen Cook7 and
Leonid Levin29 showed independently
in the 1970s that SAT is NP-complete,
making it the first NP-complete prob-
lem. So, suppose one could solve SAT in
polynomial time on arbitrary input. In

The Silent
(R)evolution
of SAT

DOI:10.1145/3560469

Today’s powerful, robust SAT solvers have
become primary tools for solving hard
computational problems.

BY JOHANNES K. FICHTE, DANIEL LE BERRE,
MARKUS HECHER, AND STEFAN SZEIDER

 key insights
 ! Propositional Satisfiability (SAT) has

been a cornerstone of computational
complexity theory; now, it has become a
central target problem for solving hard
computational problems in practice.

 ! Since the revolution in SAT solving for
decision problems that took place around
the millennium, significant efficiency
improvements have been achieved, and
new methods for certification and trust
have been added.

 ! Over the last 10 years, SAT further
evolved by broadening its applications,
including optimization, counting, and
even problems involving quantifiers.

64 COMMUNICATIONS OF THE ACM | JUNE 2023 | VOL. 66 | NO. 6

contributed articles

I
M

A
G

E
 B

Y
 I

G
O

R
 K

I
S

S
E

L
E

V

https://doi.org/10.1145/3560469

https://doi.org/10.1145/3560469

Stefan Szeider /66

Time Leap Challenge

9

new computer  
old algorithm

old computer
new algorithm

Comp 2019 Comp 1999Algo 1999 Algo 2014

Grasp zChaff siege v3 Glucose CaDiCal Maple
(1996) (2001) (2003) (2016) (2019) (2019)

old HW (1999) 73 48 37 106 98 77

new HW (2019) 76 71 93 188 190 195

Team SW

Team HW

Table 1: Summary of experimental results

implementation or hardware tricks, they provide an excellent comparison of the algorithmic ad-
vancement of solver techniques. We therefore included, for comparison, the results of Knuth’s
solvers on the same benchmark set and hardware platform as the time leap challenge. Mitchell [54]
provides an overview of techniques, implementations, and algorithmic advances of the year 2005
and looking back for 15 years. He already mentioned that the success of SAT-solving is due to
three factors: improved algorithms, improved implementation techniques, and increased machine
capacity. However, Mitchell’s work does not provide evaluations on any actual practical e↵ects at
the time. Kohlhase [46] recently published work on collecting and preserving the comparability
of old theorem provers to preserve cultural artifacts and history in Artificial Intelligence.1 For an
overview on the technique of CDCL-based solvers we refer the reader to introductory literature
such as a chapter in the Handbook of Knowledge Representation [29], chapters on the history of
modern SAT-solving [24], and CDCL-solvers [53] in the Handbook of Satisfiability [9]. Katebi,
Sakallah, and Marques-Silva [43, 64] considered various techniques of modern SAT-solvers un-
der an empirical viewpoint. They designed experiments to evaluate factors and the aggregation
of di↵erent SAT-enhancements that contribute to today’s practical success of modern solvers.
Works on targeted algorithm engineering for SAT-solvers are extensive. Just to name a few
examples, there is work on exploiting features such as optimizing memory footprints for the ar-
chitecture [10], on implementing cache-aware [13], on using huge pages [22], on how to benefit
from parallel solving [35] or employing inprocessing. Inprocessing particularly takes advantage of
modern hardware as one can execute much more instructions on a modern CPU than accessing
bytes on memory [31, 51]. Very recently, Audemard, Paulev, and Simon [1] published a heritage
system for SAT solvers. It allows for compiling, archiving, and running almost all released SAT
solvers and is based on Docker, GitHub, and Zenodo. While they aim for archivability, our
work provides an actual experiment incorporating soft- and hardware advances. We hope that
their system allows for long term preservation and, if there is no major change in the computer
architecture, that one can repeat our time leap challenge in another decade.

2 The Arena: Designing the Time Leap Challenge

To run a proper challenge, we design an arena by selecting from standard benchmark sets and
several contestants out of a vast space of possibilities. We aim for the reasonable oldest hardware
on which we can still run modern benchmark sets and solvers. In turn, this requires to set up a
modern operating system on old hardware. To make it a time leap challenge, we are interested
in solvers and hardware from similar generations, so a preferably small time frame from which
both originate. The physical e↵ort restricts us to consider only two time frames in the following.
We take modern hardware and solvers from 2019 and old hardware from around 2000 and solvers
from 2001/2002. Following academic ideas by Stallman [69], we focus on benchmark sets and

1
The Theorem Prover Museum is available online at https://theoremprover-museum.github.io/

3

update arXiv:2008.02215v2 [Fichte, Hecher, Sz. CP 2020]

https://arxiv.org/abs/2008.02215
https://doi.org/10.1007/978-3-030-58475-7_16

Stefan Szeider /64

How to resolve the mystery easy vs hard?

• Structure matters!

• How to capture structure?
10

real-world instance
(SW verification)

random instance

Stefan Szeider /66

Correlational Approach
• Try to capture structure in a way that statistically

correlates with CDCL-solving time

• community structure, modularity, centrality,..

• In general, industrial formulas have an exceptionally high
modularity, greater than 0.8 in many cases. Notice that in
other kind of networks, values greater than 0.7 are rare
[Ansotegui et al. JAIR 2019]

• No performance guarantee! [Ganian, Sz, AIJ 2021]

11

https://doi.org/10.1613/jair.1.11741
https://doi.org/10.1016/j.artint.2021.103460

Stefan Szeider /66

Causational Approach

• Try to capture structure in a way that provides worst-case
performance guarantees for SAT algorithms

• Classical results: polynomial classes like Horn, 2CNF, etc.

• Gradual dependency on how “well structured” an instance is

12

Stefan Szeider /66

Framework for Rigorous Models

• runtime guarantee should depend on
and  
 
 
… but how?

k
|F |

13

k

|F |

instances

Stefan Szeider /66

First try: XP

• if is a constant, then the runtime is
polynomial

• this doesn’t scale well in

• such runtime guarantees are called XP

k

k

14

|F |f(k)

Stefan Szeider /66

Second Try: FPT

• parameter contributes a constant
factor to the polynomial runtime, without
changing the order of the polynomial

• allows a better scaling in

• such runtime guarantees are called FPT or  
fixed-parameter tractable

• well-developed area of TCS

k

k

15

f(k) ⋅ |F |O(1)

Stefan Szeider /6616

1999 2006 2006 2013 2013

Rich Theory

Stefan Szeider /66

Hardness Theory
• For showing that a problems is

not FPT (conditionally)

17

XP

W[1]

W[2]

…

FPT

PTIME

para-NP

Stefan Szeider /66

FPT-SAT

18

Stefan Szeider /66

Parameterized Complexity

• For the causal approach, parameterized complexity provides
and ideal framework

• We can develop different parameters that capture different
properties of SAT instances

• Compare parameters by their generality

19

Stefan Szeider /66

FPT-SAT

20

F,k A

“SAT”

“UNSAT”

“p(F)>k”

“permissive” or “robust” approach

SAT
“SAT”

“UNSAT”
F,k Ver

explicit
k-structure

two-phases approach

“p(F) ≤ k”
“p(F) > k”

“p(F) ≤ f(k)” FPT-approx
p(F) ≤ k

Stefan Szeider /66

Comparison of SAT-parameters

• General research program: come up with stronger and stronger
parameters, and draw a detailed map of SAT-parameters and their
mutual dominance

21

p dominates q if there is a function f such that
 for all F it holds that p(F) ≤ f(q(F))

Stefan Szeider /66

1) Graphical Structure
2) Syntactical Structure
3) Hybrid Parameters

22

Stefan Szeider /66

1) Graphical Structure

23

Stefan Szeider /66

Graphs for F = {C1, …, C5}

C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x}, C5 = {x, y, z}

24

y

u

v

w

x

z

(a)

C2

C5

C4 C3

C1

(b)

C2
z

C5

x

C4
w

C3

v

C1

u

y

(c)

C2

C5

C4 C3

C1

(d)

C2

C5

C4 C3

C1

(e)

Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

primal graph a.k.a. VIG

Stefan Szeider /66

Graphs for F = {C1, …, C5}

C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x}, C5 = {x, y, z}

25

y

u

v

w

x

z

(a)

C2

C5

C4 C3

C1

(b)

C2
z

C5

x

C4
w

C3

v

C1

u

y

(c)

C2

C5

C4 C3

C1

(d)

C2

C5

C4 C3

C1

(e)

Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

dual graphy

u

v

w

x

z

(a)

C2

C5

C4 C3

C1

(b)

C2
z

C5

x

C4
w

C3

v

C1

u

y

(c)

C2

C5

C4 C3

C1

(d)

C2

C5

C4 C3

C1

(e)

Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

y

u

v

w

x

z

(a)

C2

C5

C4 C3

C1

(b)

C2
z

C5

x

C4
w

C3

v

C1

u

y

(c)

C2

C5

C4 C3

C1

(d)

C2

C5

C4 C3

C1

(e)

Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

conflict graph
consensus graph

Stefan Szeider /66

Graphs for F = {C1, …, C5}

C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x}, C5 = {x, y, z}

26

y

u

v

w

x

z

(a)

C2

C5

C4 C3

C1

(b)

C2
z

C5

x

C4
w

C3

v

C1

u

y

(c)

C2

C5

C4 C3

C1

(d)

C2

C5

C4 C3

C1

(e)

Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

incidence graph

y

u

v

w

x

z

(a)

C2

C5

C4 C3

C1

(b)

C2
z

C5

x

C4
w

C3

v

C1

u

y

(c)

C2
z

C5

x

C4
w

C3

v

C1

u

y

(c’)

C2

C5

C4 C3

C1

(d)

C2

C5

C4 C3

C1

(e)

Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.

2

directed incidence graph
or signed incidence graph

a.k.a. CVIG

Stefan Szeider /66

Graph Decompositions and Width Parms

• min width over all its tree decompositions

• checking is FPT

tw(G) =

tw(G) ≤ k

27

Discrete Reasoning Methods 33

a
b

c d

e ff
h

g

i

j

k

• A tree decomposition of G

a, b, ca, b, c d, e, f d, f, h

f, g

d, e, f d, f , h

f, g

c, d, e h, i

i, j

i, k

Conditions: covering and connectedness.

6.3 Tree decomposition (more formally)

• Let G be a graph, T a tree, and � a labeling of the vertices of T by sets of vertices of G.

• We refer to the vertices of T as “nodes”, and we call the sets �(t) “bags”.

• The pair (T, �) is a tree decomposition of G if the following three conditions hold:

1. For every vertex v of G there exists a node t of T such that v 2 �(t).

2. For every edge vw of G there exists a node t of T such that v, w 2 �(t) (“covering”).

3. For any three nodes t1, t2, t3 of T , if t2 lies on the unique path from t1 to t3, then �(t1) \
�(t3) ✓ �(t2) (“connectedness”).

• The width of a tree decomposition (T, �) is defined as the maximum |�(t)| � 1 over all nodes t of
T .

• The treewidth tw(G) of a graph G is the minimum width over all its tree decompositions.

6.4 Basic Facts

• Trees have treewidth 1.

• Cycles have treewidth 2.

• The complete graph on n vertices has treewidth n � 1.

• If a graph G contains a clique Kr, then every tree decomposition of G contains a node t such that
Kr ✓ �(t) (Helly property of subtrees of trees).

6.5 Complexity of Treewidth

• Determining the treewidth of a graph is NP-hard.

• For every fixed k, one can check for a graph G in linear time whether tw(G) k. (Bodlaender’s
Theorem)

a graph G

Discrete Reasoning Methods 33

a
b

c d

e ff
h

g

i

j

k

• A tree decomposition of G

a, b, ca, b, c d, e, f d, f, h

f, g

d, e, f d, f , h

f, g

c, d, e h, i

i, j

i, k

Conditions: covering and connectedness.

6.3 Tree decomposition (more formally)

• Let G be a graph, T a tree, and � a labeling of the vertices of T by sets of vertices of G.

• We refer to the vertices of T as “nodes”, and we call the sets �(t) “bags”.

• The pair (T, �) is a tree decomposition of G if the following three conditions hold:

1. For every vertex v of G there exists a node t of T such that v 2 �(t).

2. For every edge vw of G there exists a node t of T such that v, w 2 �(t) (“covering”).

3. For any three nodes t1, t2, t3 of T , if t2 lies on the unique path from t1 to t3, then �(t1) \
�(t3) ✓ �(t2) (“connectedness”).

• The width of a tree decomposition (T, �) is defined as the maximum |�(t)| � 1 over all nodes t of
T .

• The treewidth tw(G) of a graph G is the minimum width over all its tree decompositions.

6.4 Basic Facts

• Trees have treewidth 1.

• Cycles have treewidth 2.

• The complete graph on n vertices has treewidth n � 1.

• If a graph G contains a clique Kr, then every tree decomposition of G contains a node t such that
Kr ✓ �(t) (Helly property of subtrees of trees).

6.5 Complexity of Treewidth

• Determining the treewidth of a graph is NP-hard.

• For every fixed k, one can check for a graph G in linear time whether tw(G) k. (Bodlaender’s
Theorem)

a tree decomposition of G

width = size of largest bag -1

Stefan Szeider /66

Treewidth of Formulas

• prim-tw(F), dual-tw(F), inc-tw(F),
cons-tw(F), conf-tw(F)

• SAT is FPT parameterized by all
the above parameters, except for
confl-tw.

28

dual-twprim-tw

inc-tw

confl-tw

cons-tw

W[1]

FPT

Improvement of for inc-tw using
covering products [Slivovsky, Sz. SAT 2020]

O*(4k) ⇒ O*(2k)

https://doi.org/10.1007/978-3-030-51825-7_19

Stefan Szeider /66

Width
Parameter Zoo

29

prim-tw

inc-tw

branch-width

dir-inc-cwd

inc-cwd

hypertree-width

FPT/FPT

FPT/XP

XP/paraNP

Ver/SAT

(also #SAT)dir-rank-wd

dual-tw

confl-tw

cons-tw

Stefan Szeider /64

Twin-width (tww)

30

3:6 É. Bonnet et al.

Fig. 3. Hasse diagram of classes on which FO model checking is FPT, with the newcomer twin-width. The
dash-do!ed edge means that polynomial expansion may well be included in bounded twin-width. Bounded
twin-width and nowhere dense classes roughly subsume all the current knowledge on the fixed-parameter
tractability of FO model checking. Do they admit a natural common superclass still admi!ing an FPT algo-
rithm for FO model checking?

Theorem 1.1. Given ann-vertex (di)graphG, a sequence ofd-contractionsG = Gn ,Gn−1, . . . ,G1 =
K1, and a !rst-order sentence φ, we can decide G |= φ in time f (|φ |,d) · n for some computable, yet
non-elementary, function f .

This uni&es and extends known FPT algorithms for
• H -minor free graphs [18],
• posets of bounded width (i.e., size of the largest antichain) [23],
• permutations avoiding a &xed pattern [30]1 and hereditary (that is, closed under taking in-

duced subgraphs) proper subclasses of permutation graphs,
• graphs of bounded rank-width or bounded clique-width [13],2

since we will establish that these classes have bounded twin-width, and that, on them, a sequence of
d-contractions can be found e'ciently. By transitivity, this also generalizes the FPT algorithm for
L-interval graphs [28], and may shed a new uni&ed light on geometric graph classes for which FO
model checking is FPT [31]. In that direction we show that a large class of geometric intersection
graphs with bounded clique number, including Kt -free unit d-dimensional ball graphs, admits
such an algorithm. We also show that map graphs have bounded twin-width but we only provide
a d-contraction sequence when the input comes with a planar embedding of the map. FO model
checking was proven FPT on map graphs even when no geometric embedding is provided [16].
See Figure 3 for the Hasse diagram of classes with a &xed-parameter tractable FO model checking.

Permutation patterns can be represented as posets of dimension 2. Any proper hereditary sub-
class of posets of dimension 2 contains all permutations avoiding a &xed pattern. In turn, posets
can be encoded by directed graphs (or digraphs), with an arc fromu tov ifu is smaller thanv . Thus
we formulated Theorem 1.1 with graphs and digraphs, to cover all the classes of bounded twin-
width listed after the theorem (in particular, permutations excluding a &xed pattern). Twin-width
and the applicability of Theorem 1.1 is actually broader: one may replace “an n-vertex (di)graph

1Guillemot and Marx show that Permutation Pattern (not FO model checking in general) is FPT when the host permuta-
tion avoids a pattern, then a win-win argument proper to Permutation Pattern allows them to achieve an FPT algorithm
for the class of all permutations.
2for this class, even deciding MSO1 is FPT, which is something that we do not capture.

Journal of the ACM, Vol. 69, No. 1, Article 3. Publication date: November 2021.

[Bonnet et al. JACM 2022]

https://doi.org/10.1145/3486655

Stefan Szeider /66

Twin-Width of Graphs
• Reduce a given Graph to a single vertex by a sequence of contractions.

• Each contraction removes a vertex by contracting it to one of the remaining vertices . In symbols
.

• If are twins, then the contraction is perfect.

• if are not twins, record the error by coloring edges red.

• red edges remain red in subsequent steps

u v
u ↝ v

u, v

u, v

31

u

v

a
b
c
d

u ↝ v
v

a

b
c
d

Stefan Szeider /66

Twin-width of Graphs

• A d-contraction sequence of a graph contracts all vertices
step-by-step to a single vertex graph, such that each
intermediate graph has red degree at most d.

•

• The twin-width of a graph is the smallest d such that it admits
a d-contraction sequence.

G = Gn ↝ Gn−1 ↝ Gn−2 ↝ ⋯ ↝ G1

32

Stefan Szeider /66

TWW in
relationship to
other parameters

33

prim-tw

inc-tw

branch-width

dir-inc-cwd

inc-cwd

hypertree-width

FPT/FPT

FPT/XP

XP/paraNP

Ver/SAT

(also #SAT)dir-rank-wd

dual-tw

confl-tw

cons-tw

dir-inc-tww

inc-tww

If we add as additional
parameter the number
of variables set to true,

then even #SAT
becomes FPT

[Ganian, et al. SAT 2022]

https://doi.org/10.4230/LIPIcs.SAT.2022.15

Stefan Szeider /66

2) Syntactic Structure

34

Stefan Szeider /66

Tractable Classes or Islands of Tractability

35

Parameterized by the
distance to a class

where the class is
syntactical defined

easy

Stefan Szeider /66

Distance = size of smallest backdoor set

• Fix a base class C (e.g., Horn)

• B is a strong C-backdoor of F if for all
assignments we have

C.

• is obtained from F by removing
clauses from F which contain a literal
that t sets to 1, and removing from the
remaining clauses all literals that sets
to 0.

t : B → {0,1}
F[t] ∈

F[t]

t

36

F

2k

x=0 x=1

y=0 y=0y=1 y=1

z=0 z=1 z=0 z=1 z=0 z=1 z=0 z=1

∈C ∈C ∈C ∈C ∈C ∈C ∈C ∈C

strong

B = {x, y, z}

Stefan Szeider /66

Syntactic Base Classes
• Horn: each clause contains at most one positive literal

• dual Horn: each clause contains at most one negative
literal

• 2CNF (or Krom): each clause contains at most 2 literals

• RHorn: can be made Horn by consistently flipping
literals

• QHorn: there exists a function
such that and for all

clauses C of F.

v : var(F) → [0,1]
v(x) + v(x) = 1 ∑

x∈C

v(x) ≤ 1

37

QHorn

RHorn

Horn dHorn

2CNF

⊂

⊂⊂

⊂

Stefan Szeider /66

Other base classes
• HIT: any two clauses of the forma contain a

complementary pair of literals

• CLU: variable-disjoint union of HIT formulas

• W[t]: formulas of incidence treewidth at
most t.

• From base classes C and D we can form

• the heterogeneous base class C ∪ D and

• the scattered base class C ⊕ D

38

F

∈Horn ∈2CNF ∈2CNF ∈Horn

heterogeneous base classes

A hitting formula is
unsatisfiable if

∑
C∈F

2−|C| = 1

x=0 x=1

Stefan Szeider /66

Backdoor Parameter Zoo

39

Horn-bd dHorn-bd 2CNF-bd

dHorn ⋃ 2CNF-bdHorn ⋃ 2CNF-bd

Horn ⋃ dHorn-bd

Horn ⋃ dHorn ⋃ 2CNF-bd RHorn-bd

QHorn-bd

FPT

W[2]-hard

Stefan Szeider /66

Deletion backdoor sets
• B is a deletion backdoor if .

• Instead of looking at all partial assignments
we delete the backdoor variables from F

(notation).

• Fact: if is clause-induced ()
then each deletion backdoor set is also a backdoor set
(but not necessarily the other way around).

F − B ∈ C

t : B → {0,1}
F − B

C F′ ⊆ F, F ∈ C ⇒ F′ ∈ C

40

Stefan Szeider /66

Deletion Backdoor Sets

41

Horn-bd dHorn-bd 2CNF-bd

dHorn⋃2CNF-bdHorn⋃2CNF-bd

Horn⋃dHorn-bd

Horn⋃dHorn⋃2CNF-bdRHorn-bd

QHorn-bd

FPT

W[2]-hard

deletion-QHorn-bd

Stefan Szeider /66

Avoid the 2k assignments: Backdoor Trees

• smallest backdoor sets ≠
backdoor trees with
smallest number of leaves!

• subset-minimal backdoor
sets ≠ backdoor trees with
smallest number of leaves

42

F

2k

F

k + 1

Finding backdoor trees with k leaves is
FPT for Horn, dHorn, and 2CNF

even heterogeneous base
class Horn ∪ 2CNF

size of backdoor
tree = number of

leaves

[Samer, Sz. AAAI 2008], [Ordyniak, Schidler, Sz. ĲCAI 2021]

https://cdn.aaai.org/AAAI/2008/AAAI08-057.pdf
https://doi.org/10.24963/ijcai.2021/194

Stefan Szeider /66

Avoid the 2k assignments: Backdoor DNFs

• Partial assignments at the
leaves of a backdoor tree
give rise to a DNF.

• The DNF is a tautology.

43

F
x = 0 x = 1

y = 0 y = 1

z = 0 z = 1

[x]

[x ∧ y]

[x ∧ y ∧ z] [x ∧ y ∧ z]

[x] ∨ [x ∧ y] ∨ [x ∧ y ∧ z] ∨ [x ∧ y ∧ z]

Stefan Szeider /66

Avoid the 2k assignments: Backdoor DNFs
• Partial assignments at the leaves of a backdoor tree give rise to a DNF

• The DNF is a tautology

• Backdoor DNF: take any such tautological DNF

• Backdoor DNFs are more succinct than backdoor trees

44

Finding backdoor DNFs with k terms is
FPT for Horn, dHorn, and 2CNF

one can even mix Horn with 2CNF
(or dHorn with 2CNF)

bd-set bd-tree bd-DNF

DNF

[Ordyniak, Sz. ĲCAI 2021]

Stefan Szeider /66

Backdoor Depth

45

Stefan Szeider /66

Component backdoor trees

• backdoor depth: smallest depth of any component backdoor tree

• for fixed depth, number of variables in the backdoor is unbounded!

46

component nodes (red)
split instance into

connected components.

F

[Mählmann, Siebertz, Vigny, MFCS 2021]

https://doi.org/10.4230/LIPIcs.MFCS.2021.73

Stefan Szeider /66

Component backdoor Trees
• Backdoor depth is significantly better

parameter than backdoor size or number of
backdoor tree leaves

• Definition motivated by tree-depth [Nesetril,
Ossona de Mendez 2006]

• Once we have a component backdoor tree
that witnesses the backdoor depth of a given
instance, we can decide the instance quickly

• Algorithmically challenging problem: find a
component backdoor tree of small depth

47

AND

OR

I
OR

OR OR

AND

Stefan Szeider /66

FPT-approximating backdoor depth
• FPT approximation for base class NULL [Mählmann,

Siebertz, Vigny, MFCS 2021]

• FPT approximation for the base classes Horn and 2CNF
[Dreier, Ordyniak, Sz. ESA 2022]

• starting point: obstruction trees from Mählmann et al.

• Separator obstructions can separate obstruction trees
containing an unbounded number of variables from all
potential future obstruction trees.

• Use game theoretic framework for specifying the
algorithm

48

https://doi.org/10.4230/LIPIcs.MFCS.2021.73
https://doi.org/10.4230/LIPIcs.MFCS.2021.73
https://doi.org/10.4230/LIPIcs.MFCS.2021.73
https://doi.org/10.4230/LIPIcs.MFCS.2021.73
https://doi.org/10.4230/LIPIcs.ESA.2022.46

Stefan Szeider /66

Comparison Summary

49

C-bd-size D-bd-size

C∪D-bd-size C⊕D-bd-sizeC-bd-depth D-bd-depth

C=2CNF, D=Horn

Stefan Szeider /66

What’s next?

50

C-bd-size D-bd-size

C∪D-bd-size C⊕D-bd-sizeC-bd-depth D-bd-depth

C∪D-bd-depth=C⊕D-bd-depth

FPT?

C=2CNF, D=Horn

Stefan Szeider /66

3) Hybrid parameters

51

Stefan Szeider /66

Hybrid parameters

52

tw(nxn grid)=Ω(n)
Horn-backdoor=0

tw(n-tree)=1
Horn-backdoor=Ω(n)

INCOMPARABLE

Stefan Szeider /66

(A) Backdoors into bounded treewidth

• deletion backdoors are not interesting,
but strong backdoors are!

53

For each constant t, TW[t]-backdoor
detection is FPT-approx.

F

TW[t]

TW[t] = {F | tw(I(F)) ≤ t }

Stefan Szeider /66

(B) backdoor treewidth

• C-backdoor treewidth is the minimum
treewidth over the torso graphs of all the C-
backdoors.

• C-backdoor treewidth  
 ≤ min{ primal treewidth, C-backdoor size}

54

C C C

backdoor

torso graph

C-backdoor treewidth is FPT
for C ∈ {Horn,dHorn,2CNF}

Stefan Szeider /66

Parameter Zoo

55

Horn-bd dHorn-bd 2CNF-bd prim-tw

inc-tw

dir-inc-cwd

dual-tw

2CNF-bd-twdHorn-bd-twHorn-bd-tw

TW[1]-bd

TW[2]-bd

TW[3]-bd

TW[t]-bd

…

Stefan Szeider /66

Resolution Complexity

56

Stefan Szeider /66

Resolution: proofs of unsatisfiability
• To certify that a formula is satisfiable, just provide a satisfying assignment

• To certify that a formula is unsatisfiable, we need a proof.

• There are many proof systems, resolution is the most fundamental one.

• Idea: consider all clauses of the input formula as axioms.

• From two clauses already obtained and they contain a pair of closing literals, obtain their resolvent as new clause.

• When you derive the empty clause, you can stop.

57

{u, v, w} {x, y, u}

{v, w, x, y}

T. Peitl and S. Szeider Discrete Applied Mathematics 337 (2023) 173–184

Fig. 2. A shortest resolution refutation of the formula F2
5 from Example 3 (axioms highlighted).

Fig. 3. A shortest resolution refutation of the formula G from Example 4 (axioms highlighted).

Finally, we arrive at the statement that we will actually use in our encoding to prune the search spaces by asserting
certain kinds of refutations do not exist for strongly irreducible minimally unsatisfiable formulas.

Lemma 4. Let F be a strongly irreducible minimally unsatisfiable formula with more than 2 clauses, let P be a resolution
refutation of F . Let C,D 2 F be two axioms that are resolved together in P. Then at least one of C,D is used at least once more
in P.

Proof. {C,D} (F is not unsatisfiable, because F is minimally unsatisfiable. Hence P continues beyond the resolution of C
and D. If neither C nor D is used another time, then the resolvent of C and D is a clause interpolant for ({C,D}, F \ {C,D}),
contradicting F ’s strong irreducibility. ⇤

Kleine Büning and Zhao [13] studied read-once refutations for minimally unsatisfiable formulas—ones in which every
clause is only used once. Lemma 4 has implications for the existence of read-once refutations for strongly irreducible
formulas.

Corollary 4. Strongly irreducible minimally unsatisfiable formulas with more than 2 clauses do not have read-once refutations.

Example 3. Corollary 4 is in a sense tight, because there are strongly irreducible formulas with refutations where only
a single axiom is read twice and everything else only once. An example is the formula

F
2
5 = {{x1, x2}, {x2, x3}, {x3, x1}, {x1, x2, x3}, {x1, x2, x3}},

known to have hardness 10 by [24], with a shortest refutation shown in Fig. 2.

One could ask whether the decomposition refutation from Lemma 2 is optimal. This is not the case, as witnessed by
the following example.

Example 4. Let F = {{x, y, z}, {x, y, z}, {x, y, e}, {x, y, e}, {x, z, e}, {x, z, e}, {y, z, e}, {y, z, e} }. F is the formula F4,8,52
from [24] and so is known to have hardness 19. Now, consider G obtained from F by replacing the clause {x, z, e} with
the clauses {x, y, z, e} and {x, y, z, e}. Clearly, G is reducible: the two new clauses are a factor, whose basis is the replaced
clause. If the decomposition refutation were optimal, the hardness of G would have been 3 + h(F) � 1 = 21. But G has a
refutation of length 20 (see Fig. 3).

Thus concludes our tour of irreducibility and its strong cousin. In the following subsection, we show that asymptotic
resolution hardness of hitting formulas is decided on irreducible formulas—if they have polynomial-size resolution
refutations, so do all unsatisfiable hitting formulas. Then, in Section 6.1, we employ strong irreducibility to improve the
computation of shortest refutations.

178

Stefan Szeider /66

Resolution and SAT-solvers

• Fact: a formula is unsatisfiable if and only if it has a resolution
proof

• DAG-like resolution is exponentially more succinct then tree-
like resolution

• CDCL SAT solver runs on unsatisfiable formulas can be
interpreted as dag-like resolution proofs.

58

Stefan Szeider /66

Resolution and FPT algorithms

59

parameters for
which SAT is FPT

Parameters for
which FPT-size

resolution proofs
exist

= parameters
where a SAT

solver can have
FPT running

time

Stefan Szeider /66

Resolution complexity by Treewidth

• Interesting open case is the resolution complexity of HIT

• [Peitl-Sz DAM 2023]

60

prim-tw

inc-tw

dual-twinc-pw

triv[Imanishi
 WALCOM 2017]

in XP [Imanishi]
FPT after preprocessing
[Samer, Sz. JCSS 2010]

http://dx.doi.org/10.1016/j.dam.2023.05.003
https://doi.org/10.1007/978-3-319-53925-6_28
https://doi.org/10.1007/978-3-319-53925-6_28

Stefan Szeider /66

Summary

• FPT-SAT: over last 20 years, evolved
into a rich research area

• Many new developments, including
backdoor depth, bd-tw, twin-
width,…

• Incomparable top elements of FPT-
parameters - quest for unification

61

p1, p2, p3, … pr

pnew

Stefan Szeider /64

Some Challenges
• backdoor depth for heterogeneous/scattered Horn Krom

• FPT-size resolution for incidence treewidth

• resolution complexity of hitting formulas

• revisit hardness results for backdoors, avoid exact
recognition (flow augmentation)

• Revisit FPT #SAT results from Knowledge Compilation
Perspective

∪

62

Stefan Szeider /66

Handbook of Satisfiability, 2nd Edition, 2021

63

Extended and revised chapter 17
“Fixed-parameter Tractability”

http://www.ac.tuwien.ac.at/files/tr/ac-tr-21-004.pdf

http://www.ac.tuwien.ac.at/files/tr/ac-tr-21-004.pdf

Stefan Szeider /64

(Some) References
• Robert Ganian, Filip Pokrývka, André Schidler, Kirill Simonov, Stefan Szeider: Weighted Model Counting

with Twin-Width. SAT 2022: 15:1-15:17

• Johannes Klaus Fichte, Daniel Le Berre, Markus Hecher, Stefan Szeider: The Silent (R)evolution of SAT.
Commun. ACM 66(6): 64-72 (2023)

• Tomáš Peitl, Stefan Szeider: Are Hitting Formulas Hard for Resolution? Discr. Appl. Math., volume 337,
pages 173–184, 2023.

• Jan Dreier, Sebastian Ordyniak, Stefan Szeider: SAT Backdoors: Depth Beats Size. ESA 2022: 46:1-46:18

• Marko Samer, Stefan Szeider: Fixed-Parameter Tractability. Handbook of Satisfiability 2021: 693-736

• Johannes Klaus Fichte, Markus Hecher, Stefan Szeider: A Time Leap Challenge for SAT-Solving. CP
2020: 267-285; update arXiv:2008.02215v2

• Serge Gaspers, Neeldhara Misra, Sebastian Ordyniak, Stefan Szeider, Stanislav Zivný: Backdoors into
heterogeneous classes of SAT and CSP. J. Comput. Syst. Sci. 85: 38-56 (2017)

• Stefan Szeider: On Fixed-Parameter Tractable Parameterizations of SAT. SAT 2003: 188-202

64

https://doi.org/10.4230/LIPIcs.SAT.2022.15
https://doi.org/10.4230/LIPIcs.SAT.2022.15
https://doi.org/10.4230/LIPIcs.SAT.2022.15
https://doi.org/10.4230/LIPIcs.SAT.2022.15
http://dx.doi.org/10.1145/3560469
http://dx.doi.org/10.1016/j.dam.2023.05.003
http://dx.doi.org/10.1016/j.dam.2023.05.003
https://doi.org/10.4230/LIPIcs.ESA.2022.46
http://www.ac.tuwien.ac.at/files/tr/ac-tr-21-004.pdf
https://doi.org/10.1007/978-3-030-58475-7_16
https://doi.org/10.1007/978-3-030-58475-7_16
https://arxiv.org/abs/2008.02215
https://doi.org/10.1016/j.jcss.2016.10.007
https://doi.org/10.1016/j.jcss.2016.10.007
https://doi.org/10.1007/978-3-540-24605-3_15

