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Classification Instances
• Let  be a finite set of 

features.


• An (binary) example  is a 
mapping  


• A classification instance is a 
pair   of two 
disjoint sets of examples, the 
positive and negative 
examples, respectively.

F

e
e : F → {0,1}

E = (E+, E−)

2
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aka Partially Defined Boolean Functions
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Support Sets

• A set  is a support set for  if for each  
and  there is a feature  such that .


• Finding a smallest support set is NP-hard [Ibaraki, Crama, 
Hammer, 2011]. 

S ⊆ F E = (E+, E−) p ∈ E+

n ∈ E− f ∈ S f(p) ≠ f(n)

4
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Maximum Difference

• The difference  of two examples 
  is the number of features  such 

that .


• The maximum difference  of a 
classification instance   is 
the maximum  over all pairs 

 and  .


• In practice, the maximum difference is 
often quite small.

δ(e, e′￼)
e, e′￼ f ∈ F

f(e) ≠ f(e′￼)

δ(E)
E = (E+, E−)

δ(n, p)
p ∈ E+ n ∈ E−

5

instance examples features max difference
append-tis 106 531 14
australian 690 1164 24
backache 180 476 31

car 1728 22 12
cancer 683 90 18
colic 368 416 43
cleve 303 396 23

haberman 300 93 6
heart 270 382 23

hepatitis 155 362 34
house-
votes

435 17 16
hungarian 294 331 24
new-tyroid 215 335 10
promoters 106 335 106

shuttle 14500 692 18
spect 250 23 22

Narodytska et al. 2018, UCI ML repo
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Decision Trees
• A DT is a binary rooted tree whose 

nodes are labeled by features.


• Each leaf is labeled 0 or 1.


• Each non non-leaf has a 0-child 
and a 1-child.


• A DT  classifies a CE  if each 
positive example ends up in a 1-
leaf and each negative example 
ends up in a 0-leaf.


• Notation: ,  


• The DT does not need to use all 
the features, just the features of a 
support set.

T E

T ⊧ E T ⊧ e

6

Figure 2: A classification instance C and four models that classify C: a decision tree, a decision set, a decision list, and a binary
decision diagram (from left to right).
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for an example e 2 E. Starting at the root of T one does
the following at every inner node t of T . If e(�(t)) = 0
one continues with the 0-child of t and if e(�(t)) = 1 one
continues with the 1-child of t until one eventually ends up
at a leaf node l at which e is classified as �(l).

For every node t of T , we denote by EM (t) the set of ex-
amples that reach t from the root of T . EM (t) can be defined
recursively as follows: Set EM (r) = E for the root r of T
and if t is an x-child of some (inner) node p, then we set
EM (t) = EM (p)\ {e | e(�(p)) = x} for every x 2 {0, 1}.
We denote by kMk (h(M) = h(T )) the size (height) of a
DT, which is equal to the number of leaves of T (the length
of a longest root-to-leaf path in T ).
Binary Decision Diagrams. A binary decision diagram
(BDD) B is a pair (D, ⇢) where D is a directed acyclic graph
with three special vertices {s, t0, t1} such that:
• s is a source vertex that can (but does not have to) be

equal to t0 or t1,
• t0 and t1 are the only sink vertices of D,
• every non-sink vertex has exactly two outgoing neigh-

bors, which we call the 0-neighbor and the 1-neighbor
and

• ⇢ : V (D) \ {t0, t1} ! F is a function that associates to
every non-sink node of D a feature of E

For an example e 2 E, we denote by PB(e) (or P (e) if
B is clear from the context), the unique path from s to either
t0 or t1 followed by e in B. That is starting at s and ending
at either t0 or t1, P (e) is iteratively defined as follows. Ini-
tially, we set P (e) = (s), moreover, if P (e) ends in a vertex
v other than t0 or t1, then we extend P (e) by the e(⇢(v))-
neighbor of v in D. Let B be a BDD and e an example of
a CI (E,F, ⌧). The classification function B : E ! {0, 1}
of B is given by setting B(e) = b if PB(e) ends in tb. We
denote by kBk the size of B, which is equal to |V (D)|.
Ensembles. An T -ensemble E is a set of models of type T ,
where T 2 {DS,DL,DT,BDD}. We say that E classifies an
example e 2 E as b if so do the majority of models in E ,
i.e., if there are at least b|E|/2c+1 models in E that classify
e as b. We denote by kEk the size of E , which is equal toP

M2E
kMk.

Considered Problems. Let T 2 {DS,DL,DT,BDD}. We
consider the following problems.

T -MINIMUM MODEL SIZE (T-MMS)
INSTANCE: A CI C = (E,F, ⌧) and an integer s.
QUESTION: Find a model of type T and size at most

s for C or report correctly that no such
model exists.

T -MINIMUM ENSEMBLE MODEL SIZE (T -MEMS)
INSTANCE: A CI C = (E,F, ⌧) and an integer s.
QUESTION: Find an ensemble model of type T and

size at most s for C or report correctly
that no such model exists.

3 The Framework

In this section we develop the framework for learning mod-
els as well as ensembles of models for different model-
types. In the following sections, we will then show how
this framework can be employed to learn (ensembles) of de-
cision sets, decision lists, decision trees, and any form of
binary decision diagrams. At its core the framework uses
a bounded-depth branching algorithm that starting from an
empty model branches over all simple extensions of the cur-
rent model that could potentially be part of an optimum
model until either an optimum model is found or it is shown
that no optimal model of the required size exists. The frame-
work can therefore be applied to all types of models, where
the number of simple extensions of a model that can poten-
tially lead to an optimum model is bounded by our parame-
ters s+ � and those extensions can be computed efficiently.
Designing such a procedure, i.e., an efficient algorithm that
given a model computes a small but complete set of exten-
sions that can be part of an optimum model, for every model
type is the main challenge of our approach. In particular,
to achieve this one needs to design the update procedure in
such a way that at every step only a small set of novel fea-
tures need to be considered that must potentially be added to
the current model.

The framework will need to deal with so-called partial
models and so-called annotated models. That is, a partial
model can be thought of as an incomplete model that by it-
self is not yet a model but can be completed into one and
an annotated model can be thought of as a pair (M,A),
where M is a model and A is an annotation of the model
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Interpretable Models
• Subsymbolic models like neural networks are opaque 

und difficult to understand.


• DTs and other symbolic ML models have gained new 
interest.


• Still, a large DT is still difficult to understand: 


• Hence want to find a DT of smallest size (and still 
correctly classifies the CE).


• In some cases we want to find a DT of smallest 
depth, limiting the maximum number of tests that 
need to be performed for each example (tests can be 
expensive or risky).

7

d=3

depth

size
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Computational Problems

• Both problems are NP-hard [Hyafil and Rivest 1976]. 


• Many papers have been published over the last couple of years that uitilize 
SAT-solvers to find smallest/lowest-depth DTs.


• Parameterized Complexity?

8

Min-DT-Size 

‣ Instance: a classification instance , and 



‣ Question: is there a DT  of size   such that  ? 
(size=number of non-leaf nodes)


E = (E+, E−)
s > 0

T ≤ s T ⊧ E

Min-DT-Depth 

‣ Instance: a classification instance , and 



‣ Question: is there a DT  of depth   such that  ? 
(depth=length of longest root-leaf path)


E = (E+, E−)
d > 0

T ≤ d T ⊧ E
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Parameterized Complexity of Min-DT-size and Min-DT-height

• Hardness results: reduction from Hitting Set

9

parameters complexity

solution size max difference

para-NP-hard

✓ W[2]-hard, in XP

✓ para-NP-hard

✓ ✓ FPT

[Ordyniak-Sz AAAI 2021] 

https://doi.org/10.1609/aaai.v35i7.16800
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Tractability Results

• As we can enumerate all  of size  in time , this gives us the XP-results.


• We can enumerate all minimal  of size  in time 


• The features used in a smallest DT is not necessarily minimal.


• But we can enumerate in FPT time all extensions of a minimal support set 
that result in a smaller DT. Repeat the extension process. This gives the FPT 
results.

S ≤ s ns

S ≤ s δs ⋅ n

10

• Theorem: if a support set  and an integer  are given, then we 
can find in time  a DT using exactly the features in  of 
size  or decide that it doesn’t exist.  

S s
2s2

poly(n) S
≤ s
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Above the Boolean Case

• Consider features that range over an 
ordered domain of values.


• At each inner node of the DT we branch on 
a threshold value.


• The hardness results carry over.


• How about the FPT results?

11

temp, 50F

rain,0

time, 30min

- +

-

-

≤ >

≤ >

≤ >
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Threshold Selection
• Idea: start with a small value for threshold  and gradually 

increase it


• This way, more and more samples move from  to .


• The size of an optimal  increases. Stop just before it gets 
too large.


• This idea can be improved by using binary search on the 
threshold value.


• Gives FPT with parameters 


• solution size


• maximum difference


• maximum domain size.

ti

T2 T1

T1

12

f1

T1 T2

≤ t1 > t1

[Eiben, Ordyniak, Paesani, Sz. IJCAI’23]

with a refined notion of branching sets

https://doi.org/10.24963/ijcai.2023/355
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Other Symbolic Models

13

Figure 2: A classification instance C and four models that classify C: a decision tree, a decision set, a decision list, and a binary
decision diagram (from left to right).

A B C D out
1 0 1 1 1
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 0 1 0 1
0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1

A

1 D

B 1

C 0

0 1

0 1

0 1

0 1

0 1

if A = 0 then 1
if A = 1 ^ B = 0 ^ C = 1 then 1
default 0
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for an example e 2 E. Starting at the root of T one does
the following at every inner node t of T . If e(�(t)) = 0
one continues with the 0-child of t and if e(�(t)) = 1 one
continues with the 1-child of t until one eventually ends up
at a leaf node l at which e is classified as �(l).

For every node t of T , we denote by EM (t) the set of ex-
amples that reach t from the root of T . EM (t) can be defined
recursively as follows: Set EM (r) = E for the root r of T
and if t is an x-child of some (inner) node p, then we set
EM (t) = EM (p)\ {e | e(�(p)) = x} for every x 2 {0, 1}.
We denote by kMk (h(M) = h(T )) the size (height) of a
DT, which is equal to the number of leaves of T (the length
of a longest root-to-leaf path in T ).
Binary Decision Diagrams. A binary decision diagram
(BDD) B is a pair (D, ⇢) where D is a directed acyclic graph
with three special vertices {s, t0, t1} such that:
• s is a source vertex that can (but does not have to) be

equal to t0 or t1,
• t0 and t1 are the only sink vertices of D,
• every non-sink vertex has exactly two outgoing neigh-

bors, which we call the 0-neighbor and the 1-neighbor
and

• ⇢ : V (D) \ {t0, t1} ! F is a function that associates to
every non-sink node of D a feature of E

For an example e 2 E, we denote by PB(e) (or P (e) if
B is clear from the context), the unique path from s to either
t0 or t1 followed by e in B. That is starting at s and ending
at either t0 or t1, P (e) is iteratively defined as follows. Ini-
tially, we set P (e) = (s), moreover, if P (e) ends in a vertex
v other than t0 or t1, then we extend P (e) by the e(⇢(v))-
neighbor of v in D. Let B be a BDD and e an example of
a CI (E,F, ⌧). The classification function B : E ! {0, 1}
of B is given by setting B(e) = b if PB(e) ends in tb. We
denote by kBk the size of B, which is equal to |V (D)|.
Ensembles. An T -ensemble E is a set of models of type T ,
where T 2 {DS,DL,DT,BDD}. We say that E classifies an
example e 2 E as b if so do the majority of models in E ,
i.e., if there are at least b|E|/2c+1 models in E that classify
e as b. We denote by kEk the size of E , which is equal toP

M2E
kMk.

Considered Problems. Let T 2 {DS,DL,DT,BDD}. We
consider the following problems.

T -MINIMUM MODEL SIZE (T-MMS)
INSTANCE: A CI C = (E,F, ⌧) and an integer s.
QUESTION: Find a model of type T and size at most

s for C or report correctly that no such
model exists.

T -MINIMUM ENSEMBLE MODEL SIZE (T -MEMS)
INSTANCE: A CI C = (E,F, ⌧) and an integer s.
QUESTION: Find an ensemble model of type T and

size at most s for C or report correctly
that no such model exists.

3 The Framework

In this section we develop the framework for learning mod-
els as well as ensembles of models for different model-
types. In the following sections, we will then show how
this framework can be employed to learn (ensembles) of de-
cision sets, decision lists, decision trees, and any form of
binary decision diagrams. At its core the framework uses
a bounded-depth branching algorithm that starting from an
empty model branches over all simple extensions of the cur-
rent model that could potentially be part of an optimum
model until either an optimum model is found or it is shown
that no optimal model of the required size exists. The frame-
work can therefore be applied to all types of models, where
the number of simple extensions of a model that can poten-
tially lead to an optimum model is bounded by our parame-
ters s+ � and those extensions can be computed efficiently.
Designing such a procedure, i.e., an efficient algorithm that
given a model computes a small but complete set of exten-
sions that can be part of an optimum model, for every model
type is the main challenge of our approach. In particular,
to achieve this one needs to design the update procedure in
such a way that at every step only a small set of novel fea-
tures need to be considered that must potentially be added to
the current model.

The framework will need to deal with so-called partial
models and so-called annotated models. That is, a partial
model can be thought of as an incomplete model that by it-
self is not yet a model but can be completed into one and
an annotated model can be thought of as a pair (M,A),
where M is a model and A is an annotation of the model

CE

classification


instance

DT

decision tree

DS

decision Set

DL

decision List

BDD

binary decision


diagram

(back to Boolean)

Size:
number of 

decision nodes
number of 

literals
number of 

literals
number of 

decision nodes

is min-Model-size parameterized by 
(solution size + maximum difference) 

FPT for all these models?
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General Results

14

• Model type  

• Min-T-Size 

‣ Instance: a classification instance , and 


‣ Question: is there a model  of type  of size   such that  ? 

T ∈ {DT, DS, DL, BDD}

E = (E+, E−) s > 0

M T ≤ s M ⊧ E

• Theorem:   

    Min-T-Size is FPT for all . T ∈ {DT, DS, DL, BDD}

Via meta-theorem based on extendability!
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Approach

• Start with empty model.


• As long as some examples are 
incorrectly classified, branch into 
certain extensions of the current 
model .


• Branching is exhaustive.


• Stop if a correct model of size  
has been found or return that no such 
model exists.

(M ⟶ M′￼)

≤ s

15

• We annotate models with examples that 
guide the selection features one needs to 
add.


• The algorithmic idea was first used by 
[Komusiewicz et al. ICML 2023] for DTs.


• We generalize and improve the method.


• We show that it applies to DS, DL, BDD.
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Extending a Partial Model

• Theorem: If a full set of extensions for a model of type T can be computed 
in time  and has size  then Min-T-size can be solved in time 

.
g(n, δ) f(s, δ)

f(s, δ)s ⋅ (g(n, δ) + n)

16

M /⊧ e

OR

∃M′￼ ⊧ e

M1 … Mr
full set of extensions 

 are annotated modelsMi
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Results for DS, DL, DT

17

f(s, δ) g(n, δ)

δ ns

δ + s + 1 ns

δ(s + 1) ns

Min-T-Size

DS FPT

DL FPT

DT FPT

BDDs need extra treatment
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Ensembles
• A T-ensemble for a model type T is a set  of models of type T.


• A T-ensemble  acts as a single model where  classifies an example according to the majority 
decision of its element models.


• Let T* denote the model type of T-ensembles


• Size of an ensemble is the sum of sizes of ist element models.


• Ensembles are used in practice, random forests are decision tree ensembles.


• We can extend our meta theorem to  ensembles: 

N = {M1, …, Mr}

N N

18

• Theorem: If a full set of extensions for a model of type T can be computed 
in time  and has size  then Min-T*-size can be solved in time 

.
g(n, δ) f(s, δ)

f(s, δ)s ⋅ s(g(n, δ) + n)
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Results for DS, DL, DT

19

f(s, δ) g(n, δ)

δ ns

δ + s + 1 ns

δ(s + 1) ns

Min-T-Size Min-T*-Size

DS FPT FPT

DL FPT FPT

DT FPT FPT
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Weakly Extending a Partial Model

• Theorem: If a full set of weak extensions for a model of type T can be 
computed in time  and has size  then Min-T-size can be 
solved in time .

g(n, δ) f(s, δ)
f(s, δ)s ⋅ (g(n, δ) + n)

20

M /⊧ C

M1 … Mr

OR

∃M′￼ ⊧ C

full set of weak extensions 

 are modelsMi



Stefan Szeider /24

Results for BDDs

• Set of weak extensions is much larger, but still FPT-size for BDDs.


• No meta theorem for weak extensions, but we can show that BDD-ensembles have FPT-size 
weak extensions.

21

f(s, δ) g(n, δ)

δ ns

δ + s + 1 ns

δ(s + 1) ns

δ3O(s) 2O(S)nO(1)

Min-T-Size Min-T*-Size

DS FPT FPT

DL FPT FPT

DT FPT FPT

BDD FPT FPT
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All Results
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f(s, δ) g(n, δ)

δ ns

δ + s + 1 ns

δ(s + 1) ns

δ3O(s) 2O(S)nO(1)

Min-T-Size Min-T*-Size

DS FPT FPT

DL FPT FPT

DT FPT FPT

BDD FPT FPT

• Theorem:   

    Min-T-Size and Min-T*-Size is FPT for all . T ∈ {DT, DS, DL, BDD}
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Conclusion
• Theory of partially defined Boolean functions provides a fruitful 

foundation for the study of symbolic ML models.


• Provided FPT results for computing smallest models for model 
types DT,DS,DL,BDD and ensembles thereof.


• BDD results also apply to special classes (free, ordered, etc.).


• Meta-results based on extensions are particularly appealing. 


• Results most likely generalize to any finite ordered domains, 
however we expect that domain size needs to be included as a 
parameter.
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