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Classification Instances

‘ A B C D out
o 0 0 0 0 1
e Let F be a finite set of 0 0 0 1 ’
features. 0 0 1 0 1
0 0 1 1 ?
« An (binary) example ¢ is a 0 | 1 1 0 10 |1
: 0 1 0 1 ?
mapping e : F — {0,1] Sl o 1] 1 o 1
3 B 1 1 1 ?
e A classification instance is a % 1 0 0 0 0
pair £ = (E™, E7) of two i | 0 | 0 | 1 | 2
disjoint sets of examples, the 1, 0 /1 10 | 1
positive and negative T
examples, respectively. 1 1 0 1 >
1 1 1 0 0
1 1 1 1 ?
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Support Sets

e AsetS C FisasupportsetforE=(ET,E7)ifforeachp € E™
and n € £~ there is a feature f € S such that f(p) # f(n).

* Finding a smallest support set is NP-hard [lbaraki, Crama,
Hammer, 2011].
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Maximum Difference

» The difference o(e, e’) of two examples
e, e’ is the number of features f € F’ such

that f(e) # f(e).

» The maximum difference o(F) of a
classification instance £ = (E7,E7) is
the maximum o(n, p) over all pairs
peETandn e E™.

e |n practice, the maximum difference is
often quite small.
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instance | examples | features max difference
append-tis 106 531 14
australian 690 1164 24
backache 180 476 31
car 1728 22 12
cancer 683 90 18
colic 368 416 43
cleve 303 396 23
haberman 300 93 6
heart 270 382 23
hepatitis 155 362 34
house- 435 17 16
hungarian 294 331 24
new-tyroid 215 335 10
promoters 106 335 106
shuttle 14500 692 18
spect 250 23 22

Narodytska et al. 2018, UCI ML repo
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Decision Trees

« ADT is a binary rooted tree whose
nodes are labeled by features.

Q

—t e e e e O O O =
=

e Each leaf is labeled 0 or 1.

e Each non non-leaf has a 0-child
and a 1-child.

i
'

7

i

A DT T classifies a CE E if each
positive example ends up in a 1-
leaf and each negative example
ends up in a 0-leaf.

e Notationi: T FE, T Ee

SO OO R~ M~ MM = I
— —_ O OO~ ~,O O
— O = O == OO~
sleolecNeoleNeoNeNeNl Ty

e The DT does not need to use all
the features, just the features of a
support set.
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Interpretable Models

Stefan Szeider

Subsymbolic models like neural networks are opaque
und difficult to understand.

DTs and other symbolic ML models have gained new
interest.

Still, a large DT is still difficult to understand:

Hence want to find a DT of smallest size (and still
correctly classifies the CE).

In some cases we want to find a DT of smallest
depth, limiting the maximum number of tests that
need to be performed for each example (tests can be
expensive or risky).

ac/lMuomene Bl INformatics
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Computational Problems

Min-DT-Size Min-DT-Depth
» Instance: a classification instance E = (E™, E7), and » Instance: a classification instance £ = (E™*, E7), and
s >0 d>0
» Question: is there a DT T of size < s suchthatT E E ? > Question: is there a DT T of depth < d suchthatT F E ?
(size=number of non-leaf nodes) (depth=length of longest root-leaf path)

* Both problems are NP-hard [Hyafil and Rivest 1976].

 Many papers have been published over the last couple of years that uitilize
SAT-solvers to find smallest/lowest-depth DTs.

 Parameterized Complexity?
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Parameterized Complexity of Min-DT-size and Min-DT-height
[Ordyniak-Sz AAAI 2021]

parameters

complexity

solution size

max difference

para-NP-hard

v WI2]-hard, in XP
v para-NP-hard
v v FPT

* Hardness results: reduction from Hitting Set
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https://doi.org/10.1609/aaai.v35i7.16800

Tractability Results

e Theorem: if a sup?ort set S and an integer s are given, then we

can find in time 2° poly(n) a DT using exactly the features in § of
size < s or decide that it doesn’t exist.

» As we can enumerate all S of size < s in time n”, this gives us the XP-results.

* We can enumerate all minimal S of size < sintime o’ - n
* The features used in a smallest DT is not necessarily minimal.

 But we can enumerate in FPT time all extensions of a minimal support set

that result in a smaller DT. Repeat the extension process. This gives the FPT
results.
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Above the Boolean Case

temp, 50F

< >
* Consider features that range over an

ordered domain of values.

e At each inner node of the DT we branch on
a threshold value.

<

time, 30min
* The hardness results carry over.

< >

 How about the FPT results?

-4
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Threshold Selection

» ldea: start with a small value for threshold 7; and gradually
increase it

IN

« This way, more and more samples move from 15 to 1.

 The size of an optimal 1 increases. Stop just before it gets
too large.

* This idea can be improved by using binary search on the
threshold value.

 Gives FPT with parameters
e solution size

e maximum difference

[Eiben, Ordyniak, Paesani, Sz. IJCAI’23]
with a refined notion of branching sets

o 2
PR SR S s
- . N 2T N ]
= oSS T e
[ ] L LE G
e san S - / n
5 o Zadnd N S
2 g~
o= e >
- azoiasi

Stefan Szeider QC IlIALGORITHMSAND M Nformatics 12/24

COMPLEXITY GROUP


https://doi.org/10.24963/ijcai.2023/355

(back to Boolean)

Other Symbolic Models

Is min-Model-size parameterized by

A B C D out Y (solution size + maximum difference) A
1011 1 0 \ FPT for all these models? \1
1 000 O {
D 0 B
1100 0 0 ,
1110 0 \[l o if A=0 then 1 ZAar
1010 1 B i A= Uthen | elseif B = 1 then 0 C
07 N ifA=1ANB=0AC=1thenl .

0000 1 h ofault elseif C' =1 then 1 0
00101 JC defau elseif true  then 0
0100 1 E{ \l'.l
O110 1

CE DT DS DL BDD

classification  decision tree decision Set decision List binary decision

iInstance diagram

number of number of number of number of
Size: decision nodes NEEIS NEEIS decision nodes
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General Results

. Model type T € {DT, DS, DL, BDD
 Min-T-Size
> Instance: a classification instance £ = (E7,E7),and s > 0

> Question: is there a model M of type T of size < § suchthatM E E ?

e Theorem:

Min-T-Size is FPT for all T € {DT, DS, DL, BDD .

Via meta-theorem based on extendability!
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Approach

o Start with empty model.

* As long as some examples are
incorrectly classified, branch into
certain extensions of the current

model (M — M').

 Branching is exhaustive.

o Stop if a correct model of size < s
has been found or return that no such
model exists.
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We annotate models with examples that

guide the selection features one needs to
add.

The algorithmic idea was first used by
[Komusiewicz et al. ICML 2023] for DTs.

We generalize and improve the method.

We show that it applies to DS, DL, BDD.
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Extending a Partial Model

M E e

VAN
o

dM' E e

full set of extensions
M are annotated models

 Theorem: If a full set of extensions for a model of type T can be computed
in time g(n, 0) and has size f(s, 0) then Min-T-size can be solved in time

f(S9 5)S ' (g(na 5) T l”l)
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Results for DS, DL, DT

1(s,0) g(n, o) Min-T-Size
DS %) ns FPT
DL o+s+1 ns FP
DT o(s+ 1) 7ns FPT
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BDDs need extra treatment
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Ensembles

A T-ensemble for a model type Tisaset N = {M,, ..., M} of models of type T.

« A T-ensemble N acts as a single model where N classifies an example according to the majority
decision of its element models.

 Let T* denote the model type of T-ensembles
* Size of an ensemble is the sum of sizes of ist element models.
 Ensembles are used in practice, random forests are decision tree ensembles.

e We can extend our meta theorem to ensembles:

 Theorem: If a full set of extensions for a model of type T can be computed
in time g(n, 0) and has size f(s, 0) then Min-T*-size can be solved in time

1(s,0)’ - s(g(n, o) + n).
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Results for DS, DL,

DT

1(s, 0) g(n, o) Min-T-Size = Min-T*-Size
DS O ns FPT FPT
DL o+s+1 ns FPT FPT
DT o(s + 1) ns FPT EPT
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Weakly Extending a Partial Model

M EC

VAN
7

AM'E C

full set of weak extensions
M are models

 Theorem: If a full set of weak extensions for a model of type T can be
computed in time g(n, 0) and has size f(s, 0) then Min-T-size can be
solved in time f(s, 0)° - (g(n, o) + n).
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Results for BDDs

J(s,0) g(n,0) Min-T-Size | Min-T*-Size
DS 0 ns FPT FPT
DL 0+s+1 ns FPT FPT
DT o(s+ 1) ns FP FPT
BDD 5300 209, 0 FPT FPT

» Set of weak extensions is much larger, but still FPT-size for BDDs.

e No meta theorem for weak extensions, but we can show that BDD-ensembles have FPT-size
weak extensions.
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All Resulits

1(s,0) g(n, o) Min-T-Size | Min-T*-Size
DS 0 ns FPT FPT
DL o+s+1 ns FPT FPT
DT o(s + 1) ns FPT FPT
BDD 530 208, 0() FPT FPT
* Theorem:

Min-T-Size and Min-T*-Size is FPT for all T € {DT, DS, DL, BDD}.
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Conclusion

* Theory of partially defined Boolean functions provides a fruitful
foundation for the study of symbolic ML models.

* Provided FPT results for computing smallest models for model
types DT,DS,DL,BDD and ensembles thereof.

 BDD results also apply to special classes (free, ordered, etc.).
 Meta-results based on extensions are particularly appealing.

* Results most likely generalize to any finite ordered domains,
however we expect that domain size needs to be included as a
parameter.
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