Binary Constraint Trees and Structured Decomposability

Petr Kučera

Charles University, Czech Republic

Boolean Seminar 2023 Liblice, September 24–28, 2023

Overview

- Binary Constraint Trees
- 2 Structured Decomposable Negation Normal Forms
- O The Equivalence
- 4 Translating a BCT into a SDNNF
- 5 Translating an SDNNF into a BCT
- 6 Conclusion

CSP a pair (\mathbf{x}, C)

variables x

constraints C

Domain of $x \in \mathbf{x}$ finite set of values dom(x)

Literal on $x \in \mathbf{x}$ assignment $(x, a), a \in dom(x)$

Tuple over $\{x_{i_1}, ..., x_{i_r}\}$ set of literals $\{(x_{i_1}, a_1), ..., (x_{i_r}, a_r)\}$

Scope of $c \in C$ variables on which c is defined

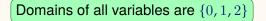
Relation of $c \in C$ tuples that satisfy c

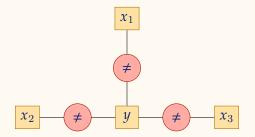
Solution of *P* tuple τ over x satisfying all constraints $c \in C$

 restriction of *τ* to the scope of *c* belongs to the relation of *c*

Binary Constraint Tree (Wang and Yap, 2022b)

Normalized binary CSP (x, C) whose constraint graph is a tree





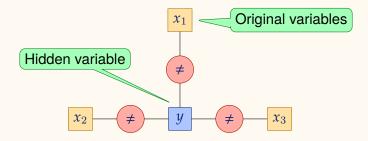
BCT Constraint (Wang and Yap, 2022b)

```
Pair (x, P) which consists of
Binary constraint tree P = (z, C)
Original variables x
Hidden variables z \setminus x
Constraint relation solutions of P restricted to the original variables x
```

Not All Different

BCT constraint
$$x_1 = x_2 \lor x_1 = x_3 \lor x_2 = x_3$$

Domains of all variables are $\{0, 1, 2\}$



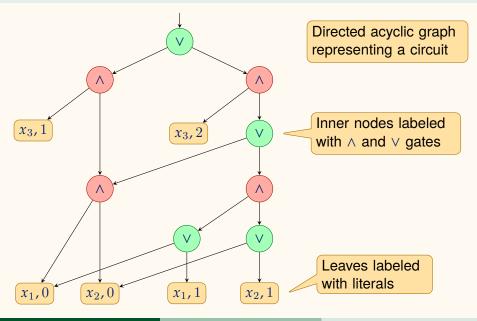
Properties of BCT Constraints

- Efficient consistency checking an propagation
- MDD can be encoded as a BCT (Wang and Yap, 2022b)
- NFA constraint can be encoded as a BCT (Wang and Yap, 2022a)
- Propagation complete encodings of BCT constraints (Wang and Yap, 2022a)
- Efficient combinations of BCT constraints having the same tree structure (Wang and Yap, 2023)

Our result

BCT constraints are polynomially equivalent to constraints that can be represented with structured DNNFs.

Multivalued Negation Normal Form (NNF)



NNF Constraint

Constraint *c* represented with a NNF *D*: Scope variables in the leaves *D* Relation tuples τ on which *D* evaluates to true • Set inputs $(x, a) \in \tau$ to true • Set inputs $(x, a) \notin \tau$ to false

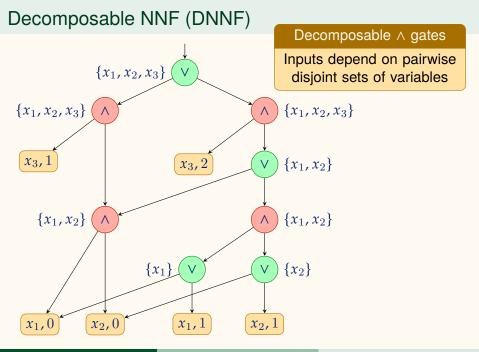
Decomposable NNF (DNNF) decomposable \land gates

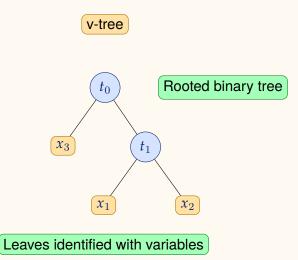
- Darwiche, 1999
- Efficient consistency checking
- Efficient propagation (Gange and Stuckey, 2012)

Structured DNNF (SDNNF) conjunctions have a tree-like structure

- Pipatsrisawat and Darwiche, 2008
- Efficient conjoining two SDNNFs with the same structure

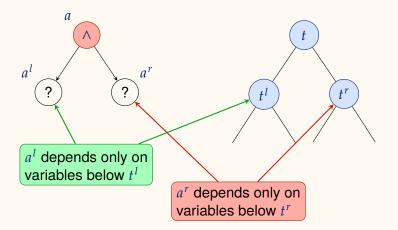
Petr Kučera	BCTs a
-------------	--------

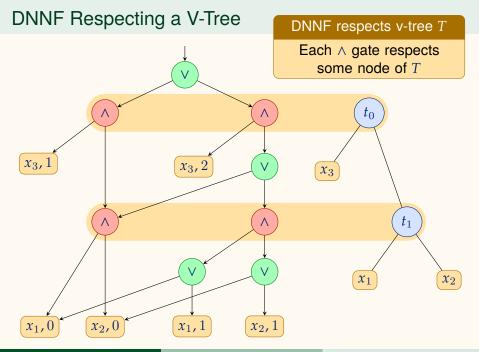




Conjunction Respecting a V-Tree Node

Conjunction gate *a* respects *t*





Structured DNNF (SDNNF)

Pipatsrisawat and Darwiche, 2008

DNNF *D* is structured (SDNNF) if it respects some v-tree.

- Includes structured decision diagrams (OBDD, MDD, SDD)
- Strictly less succinct than DNNF
- Strictly more succinct than AOMDD
- Efficient conjoining two SDNNF respecting the same v-tree

The Equivalence

Theorem

BCT constraints are polynomially equivalent to SDNNF constraints.

- BCT constraint c* = (x, P) can be transformed into an SDNNF representing c*
- SDNNF *D* representing constraint *c*^{*} can be transformed into a BCT encoding *c*^{*}

$BCT \rightarrow SDNNF$ (Idea)

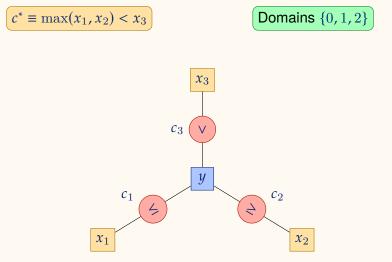
- BCT constraint $c^* = (\mathbf{x}, P)$
 - BCT P = (z, C)
 - Hidden variables $\mathbf{y} = \mathbf{z} \setminus \mathbf{x}$
- Make the constraint tree rooted
 - Pick any node as the root
 - Directed the edges away from the root
- Proceed from the leaves to the root
- **(3)** For every variable $z \in \mathbf{z}$ and value $a \in dom(z)$, construct SDNNF
 - $D_{z,a}$ representing the constraints below z assuming literal (z, a)

Leaf a single node (z, a)

Inner combine the SDNNFs for the constraints "leaving" z

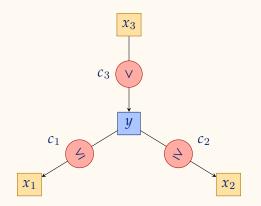
- 4 Construct D_P for the root
 - Combine the SDNNFs for the constraints leaving the root
- $\mathbf{5}$ Forget the hidden variables in D_P to obtain D that represents c^*

$BCT \rightarrow SDNNF$ (Example)

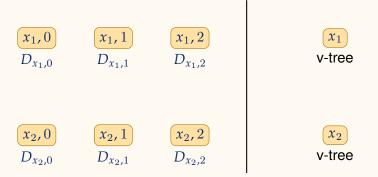


Rooted Tree

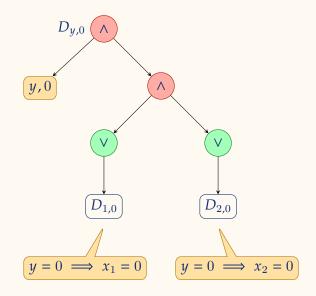
Pick x_3 as the root

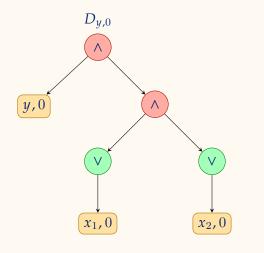


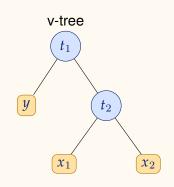
SDNNFs For the Leaves



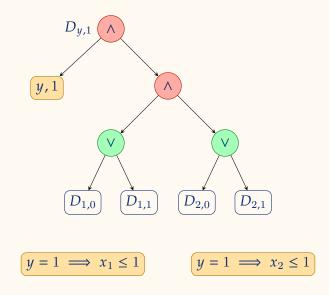
SDNNF for (y, 0)

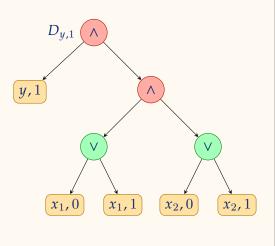


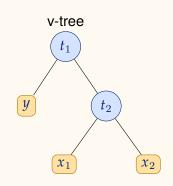




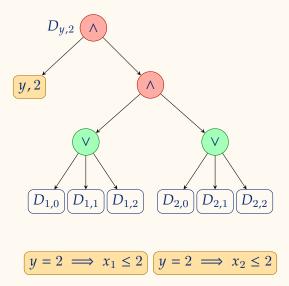
SDNNF for (y, 1)



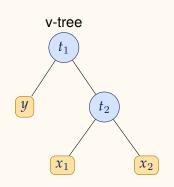




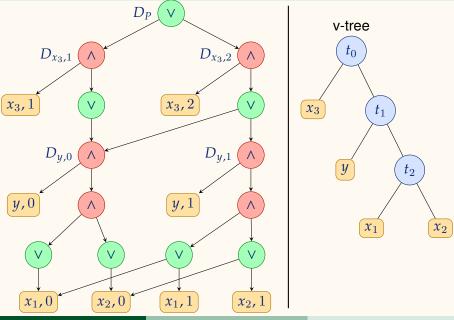
SDNNF for (y, 2)





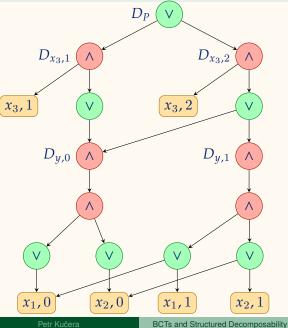


SDNNF D_P



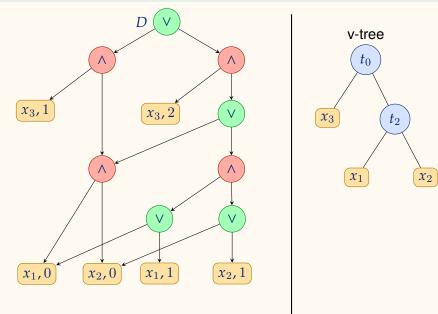
Petr Kučera

Forget y





Simplify

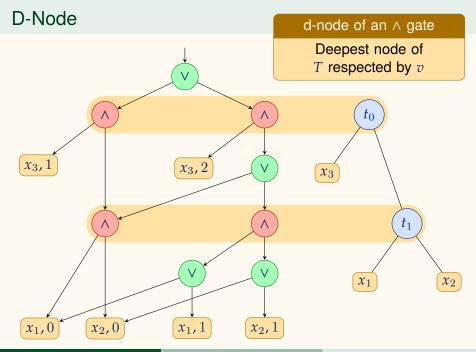


SDNNF → BCT (Idea)

- SDNNF D representing constraint c* with scope x
- v-tree T

Construct

- BCT $P = (\mathbf{z}, C)$ encoding c^*
- Structure of P is equal to T
- $\mathbf{z} = \mathbf{x} \cup \mathbf{y}$
- Inner node t has an associated hidden variable $y_t \in \mathbf{y}$
- $dom(y_t)$ consists of the \land gates with d-node t



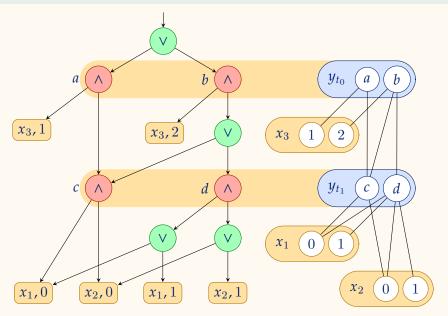
Encoding Certificates

- Certificate S of D = minimal satisfied subtree
- For every node t of the v-tree, S contains exactly one ∧-gate with d-node t
 - Assuming smoothness
- Relation of constraint c_{t,t'} corresponding to edge (t, t') of T:

t' is leaf $x \in \mathbf{x}$: pairs (v, (x, a))

- v is \wedge gate with d-node t
- (x, a) is reachable from v only by \vee gates
- t' is an inner node: pairs (v, v')
 - v is an \wedge gate with d-node t
 - v' is an \wedge gate with d-node t'
 - v' is reachable from v only by \lor gates

Example



Conclusion

- Construction of an SDNNF from BCT enforces arc consistency
- Size of the SDNNF can be parameterized by the domain size and the treewidth of a binary CSP
 - CSPs can be binarized
 - SDNNF can be constructed for any CSP
- SDNNF restructuring by picking another v-tree node as the root
- All that is known about SDNNFs can be applied to BCTs and vice versa
- Knowledge compilers for compiling into an SDNNF or SDD, can be used to compile into a BCT

References I

 Darwiche, Adnan (1999). "Compiling Knowledge into Decomposable Negation Normal Form". In: Proceedings of the 16th International Joint Conference on Artifical Intelligence - Volume 1. IJCAI'99. Stockholm, Sweden: Morgan Kaufmann Publishers Inc., pp. 284–289.
 Gange, Graeme and Peter J. Stuckey (2012). "Explaining Propagators for s-DNNF Circuits". In: Integration of AI and OR Tochniques in Contraint Programming for Combinatorial

Optimization Problems. Ed. by Nicolas Beldiceanu, Narendra Jussien, and Éric Pinson. Springer Berlin Heidelberg, pp. 195–210. ISBN: 978-3-642-29828-8.

References II

Pipatsrisawat, Knot and Adnan Darwiche (2008). "New Compilation Languages Based on Structured Decomposability". In: Proceedings 1. AAAI'08. Chicago, Illinois: AAAI Press, pp. 517–522. ISBN: Wang, Ruiwei and Roland H. C. Yap (2022a). "CNF Encodings of Binary Constraint Trees". In: 28th International Conference on Dagstuhl – Leibniz-Zentrum für Informatik, 40:1–40:19. ISBN: 9783959772402, pol: 10.4230/LIPIcs.CP.2022.40.

References III

 Wang, Ruiwei and Roland H. C. Yap (June 2022b). "Encoding Multi-Valued Decision Diagram Constraints as Binary Constraint Trees". In: Proceedings of the AAAI Conference on Artificial Intelligence 36.4, pp. 3850–3858. DOI: 10.1609/aaai.v36i4.20300.
 — (June 2023). "The Expressive Power of Ad-Hoc Constraints for Modelling CSPs". In: Proceedings of the AAAI Conference on Artificial Intelligence 37.4, pp. 4104–4114. DOI:

10.1609/aaai.v37i4.25526.