Boolean functions in cryptography

Nikolay Kaleyski

Boolean Seminar Liblice 2023

Nikolay Kaleyski

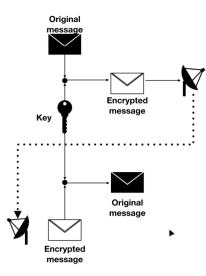
Boolean functions in cryptography

Boolean Seminar Liblice 2023 1 / 22

Boolean functions and vectorial Boolean functions

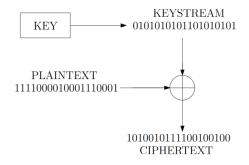
- $\mathbb{F}_2 = \{0, 1\};$
- $\mathbb{F}_{2}^{n};$
- Boolean function (BF): $f : \mathbb{F}_2^n \to \mathbb{F}_2$;
- $\mathbb{F}_{2^n};$
- $f: \mathbb{F}_{2^n} \to \mathbb{F}_2;$
- vectorial BF (VBF): $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$;
- $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^m};$
- also called (*n*, *m*)-function;
- $F = (f_1, f_2, \dots, f_m)$ for $f_i : \mathbb{F}_2^n \to \mathbb{F}_2$;
- *f_i* are the **coordinate functions** of *F*;
- non-zero linear combinations are the component functions of F.

Cryptography and symmetric ciphers

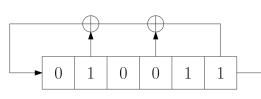


- Secure transmission of a sensitive message across a channel;
- original message = plaintext;
- encrypted message = ciphertext;
- encryption/decryption only possible with knowledge of the secret key;
- symmetric = same key used for encryption and decryption.

Stream ciphers

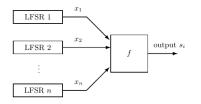


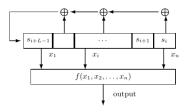
- Plaintext processed as a *stream* of bits;
- short key expanded into arbitrarily long keystream;
- keystream XOR-ed with plaintext to encrypt;
- keystream XOR-ed with ciphertext to decrypt;
- different stream ciphers = different ways of generating the keystream.



- Linear Feedback Shift Register (LFSR);
- can generate up to 2ⁿ 1 states before looping:
 - 01001**1**;
 - 00100**1**;
 - 10010**0**;
 - 11001**0**;
 - 11100**1**;
- insecure due to linear behavior.

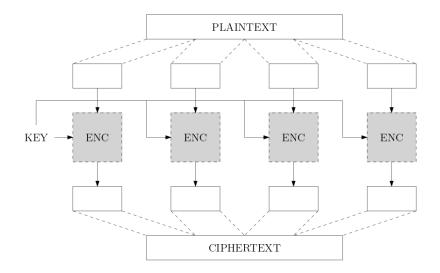
Combiners and filters



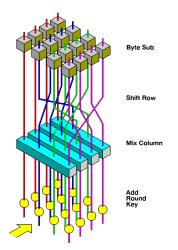


- A **combiner** BF relates the output bits of *n* LFSRs into a single output bit;
- a **filter** BF computes the output bit as a function of multiple cells;
- the BF is the only nonlinear component of the stream cipher;
- the BF must have "good cryptographic properties".

Block ciphers



Block cipher design

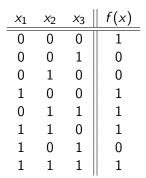


- Data split into smaller blocks;
- interleaved linear operations with a nonlinear VBF;
- round structure repeated multiple times;
- e.g. AES (Advanced Encryption Standard, AKA the Rijndael cipher).

- BFs and VBFs are the only nonlinear parts in ciphers;
- regular structure and patterns can be exploited;
- different attacks = different structure;
- different attacks ⇒ different properties;
- a good F : 𝔽ⁿ₂ → 𝔽^m₂ should have near optimal values of all relevant properties;
- finding good tradeoffs is challenging.

Representations

Algebraic Normal Form



• $F : \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}^{m}$; • $F(x_{1}, x_{2}, \dots, x_{n}) = \sum_{l \in \mathcal{P}(\{1, 2, \dots, n\})} a_{l} \prod_{i \in I} x^{i}$; • $a_{l} \in \mathbb{F}_{2}^{m}$; • $f(x_{1}, x_{2}, x_{3}) = 1 + x_{2} + x_{3} + x_{1}x_{2} + x_{1}x_{2}x_{3}$.

ANF (another example)

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	$f_1(x_1, x_2, x_3, x_4)$	$f_2(x_1, x_2, x_3, x_4)$
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	0	1
0	0	1	1	0	0
0	1	0	0	1	0
0	1	0	1	1	1
0	1	1	0	1	1
0	1	1	1	1	0
1	0	0	0	1	0
1	0	0	1	1	1
1	0	1	0	1	1
1	0	1	1	1	0
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	0	0

 $F(x_1, x_2, x_3, x_4) = (1, 0)x_1 + (1, 0)x_2 + (0, 1)x_3 + (0, 1)x_4.$

Univariate representation

- $\mathbb{F}_2^n \approx \mathbb{F}_{2^n}$;
- $p(x) \in \mathbb{F}_2[x]$ primitive with of degree *n*;
- $p(\alpha) = 0;$
- $\mathbb{F}_{2^n} = \mathbb{F}_2[\alpha] = \{a_0 + a_1\alpha + \dots + a_n\alpha^{n-1} : a_0, a_1, \dots, a_{n-1} \in \mathbb{F}_2\};$
- $a_0 + a_1 \alpha + \cdots + a_n \alpha^{n-1} \approx (a_0, a_1, \ldots, a_{n-1});$
- $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ with $m \mid n$;
- $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n};$
- $F(x) = \sum_{i=0}^{2^n-1} a_i x^i, a_i \in \mathbb{F}_{2^n};$
- many important functions have short representations;
- $F(x) = x^3$.

Univariate representation: example

- $F(x) = x^3$ over \mathbb{F}_{2^3} ;
- $p(x) = x^3 + x + 1;$
- $\alpha^3 + \alpha + 1 = 0;$
- F(1,0,1) =?;
- $(1,0,1) = (1 + \alpha^2);$ • $(1 + \alpha^2)^3 = (1 + \alpha^4)(1 + \alpha^2);$ • $= (1 + \alpha + \alpha^2)(1 + \alpha^2);$ • $= 1 + \alpha^2 + \alpha + \alpha^3 + \alpha^2 + \alpha^4;$
- = 1 + α + α + 1 + α^2 + α ;
- F(1,0,1) = (0,1,1).

- BFs should be balanced: $\#f^{-1}(0) = \#f^{-1}(1)$;
- (*n*, *n*)-VBFs must be balanced (bijective) for e.g. Substitution-Permutation-Networks;
- it is preferable for VBFs to be balanced in any case;
- *F* : 𝔽ⁿ₂ → 𝔽^m₂ is balanced if and only if all of its components are balanced.

Algebraic degree

- ANF: $F(x_1, x_2, ..., x_n) = \sum_{I} a_{I} \prod_{i \in I} x^i$;
- $\deg(F) = \max\{\#I : a_I \neq 0\};$
- deg(F) ≤ 1: linear (affine) function;
- deg(F) = 2: quadratic;
- deg(F) should be high;
- low deg(F) implies a low linear complexity of the output sequence for combiners and filters;
- low deg(F) allows structural attacks (integral, cube, higher-order differential) in block ciphers.

 How well f : 𝔽ⁿ₂ → 𝔽₂ can be approximated by an affine function a ∈ 𝔄_n = {a : 𝔽ⁿ₂ → 𝔽₂, deg(F) ≤ 1};

•
$$\mathcal{NL}(f) = \min\{d_H(f, a) : a \in \mathcal{A}_n\};$$

- low $\mathcal{NL}(f)$ allows fast correlation attacks for stream ciphers;
- covering radius bound: $\mathcal{NL}(f) \leq 2^{n-1} 2^{n/2-1}$;
- $f: \mathbb{F}_2^n \to \mathbb{F}_2$ is **bent** if $\mathcal{NL}(f) = 2^{n-1} 2^{n/2-1}$.

- f: 𝔽ⁿ₂ → 𝔽₂ is t-th order correlation immune (CI) if its output distribution is unaltered when at most t bits are fixed;
- if fg = 0, g is called an **annihilator** of f;
- algebraic immunity Al(f) = lowerst algebraic degree of an annihilator of f or (f + 1);

•
$$D_a f(x) = f(a + x) + f(x);$$

- *f* satisfies the propagation criterion (PC) w.r.t. *E* if *D_af* is balanced for all *a* ∈ *E*;
- if $D_a F$ is constant, then *a* is a **linear structure** of *f*;
- linear structures should not exist;

• . . .

Differential uniformity

- $D_aF(x) = F(a+x) + F(x);$
- $D_aF(x) = b;$
- $\delta_F(a,b) = \#\{x \in \mathbb{F}_2^n \mid D_aF(x) = b\};$

•
$$\Delta_F = \max\{\delta_F(a, b) : 0 \neq a, b\};$$

- low Δ_F gives good resistance to differential attacks;
- always even;
- if $\Delta_F = 2$, then F is almost perfect nonlinear (APN).

- Infinite families (constructions of good e.g. (*n*, *n*)-functions for infinitely many *n*);
- e.g. $F(x) = x^3 + \beta x^{2^i 1} + \beta^2 (x^3)^{2^{n/2}} + (x^{2^i 1})^{2^{n/2}}$ is APN over \mathbb{F}_{2^n} for n = 10 + 4k for i = n/2 1 or $i = (n/2 1)^{-1} \pmod{n}$;
- computational searches for good functions;
- for example, for functions with a simple form under some representation;
- efficiently testing properties.

- Classes of cryptographic functions considered only up to "appropriate" equivalence relations;
- CCZ-equivalence (Carlet-Charpin-Zinoviev): $L(\Gamma_F) = \Gamma_G$ where $\Gamma_F = \{(x, F(x)) : x\}$ and L is a linear permutation;
- EA-equivalence (extended affine): $A_1 \circ F \circ A_2 + A = G$, where A_1, A_2, A affine and A_1, A_2 permutations;
- affine equivalence: A = 0;
- linear equivalence: $A_1(0) = A_2(0) = 0;$
- testing equivalence is also hard!

Thank you for your attention!