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Happy Birthday Endre!!




Goal of the talk

To describe:
e a class of combinatorially defined threshold monotone Boolean functions,
e a construction of all such functions,

e applications to structural and algorithmic graph theory.



Given two binary vectors x,y € {0,1}", we write x < y if x; < y; for all
ie{l,...,n}.

A Boolean function f : {0,1}" — {0, 1} is monotone if for all x,y € {0,1}":

x<y = f(x)<fly).

A Boolean function is monotone if and only if it can be represented by a
monotone DNF.

Example:
f(Xl, X2, X3, X4) = x1X2 V X3X4 V X1X2Xa



An implicant of a Boolean function f : {0,1}" — {0, 1} is a conjuction C of
literals that implies f:

C(x) < f(x) for all x € {0,1}".
An implicant is prime if it does not imply any other implicant.
Example: For the function f given by the DNF
X1X2 V X3X4 V X1X2X4 ,

each of the three terms of the DNF is an implicant of f.
However, the implicant xix2xa is not prime, since it implies the implicant xix.

Every monotone Boolean function has a unique irredundant DNF, namely the
disjunction of all its prime implicants.

Example: The unique irredundant DNF of the function f from the previous
example is x1x2 V x3Xa.



Every Boolean function f : {0,1}" — {0, 1} partitions the Boolean hypercube
{0,1}" into two sets Vy and Vi, where

Vo = {x € {0,1}": f(x) = 0} is the set of false points of f, and
Vi = {x €{0,1}": f(x) = 1} is the set of true points of f.

A Boolean function f is threshold if its sets of false points and true points can
be separated by a hyperplane, that is, if there exist real numbers wi, ..., wy, t
such that

f(x) =0 if and only if Z wix; < t.
i—1

Question: Given a monotone Boolean function represented by a DNF, how
difficult it is to check if it is threshold?



Theorem (Peled, Simeone, 1985)
There is a polynomial-time algorithm that determines, given a monotone
Boolean function f represented by a DNF, whether f is threshold.

The algorithm is based on linear programming.

Recall that the goal of the talk is to describe:
e a class of combinatorially defined threshold monotone Boolean functions,
e a construction of all such functions,

e applications to structural and algorithmic graph theory.



A hypergraph is a pair (V, E) where V is a set of vertices and E is a set of
subsets of V called hyperedges.

To every monotone Boolean function f : {0,1}" — {0, 1} we associate its
prime implicant hypergraph H;:
e V={1,...,n},

e aset SC {1,...,n} is a hyperedge if and only if A
implicant of f.

ies Xi IS a prime

By construction, the prime implicant hypergraph Hs is always Sperner:
no hyperedge contains another.

Example:

Let f = x1x0 V x3x3.

Then Hf = ({17 27 374}7 {{la 2}’ {3v 4}})



Note that a hypergraph H = (V, E) is Sperner if and only if any two distinct
hyperedges e, f € E satisfy

min{|e \ f|,|f \ e/} > 1.

A hypergraph is H = (V/, E) 1-Sperner if any two distinct hyperedges e, f € E
satisfy

min{le\ f|,|f\ e} =1,
that is, if for every two hyperedges the smallest of the two set differences is

of size one.
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By definition, a monotone Boolean function f is 1-Sperner if its prime
implicant hypergraph is 1-Sperner.

Proposition (Chiarelli, M., WG 2013, DAM 2014)
Every 1-Sperner Boolean function is threshold.
The proof does not show how to compute the threshold weights.

It is based on a characterization of threshold Boolean functions via
asummability due to Chow (1961) and Elgot (1961)

(which itself relies on Farkas’ Lemma / separation of convex polyhedra).



In general, the geometrically defined thresholdness property is sandwiched
between two combinatorially defined properties:

2-asummable

A

threshold
k-asummable for all k > 2

1-Sperner




A Boolean function f is 2-summable if there exist two true points x*, x* and
two false points y!, y? such that

PR :y1 +y2.
It is 2-asummable if it is not 2-summable.

Example: The function f = x1x2 V x3x4 is 2-summable, as verified by:
x'=(1,1,0,0), x> = (0,0,1,1)
.yl = (1’07170)Y .y2 - (071’0’1)

In particular, f is not threshold, since it is not 2-asummable.



In general, none of the implications in the diagram can be reversed.

2-asummable

A

threshold

k—asummablgfor all k> 2

1-Sperner

However, for some classes of monotone Boolean functions arising from graphs,

2-asummability implies thresholdness or even 1-Spernerness.

In such cases, the thresholdness property admits a simple combinatorial

characterization.



To every graph G, we can associate a hypergraph H with vertex set V(G) in
many ways, for example, by taking for hyperedges:

e the edges,

e the minimal vertex covers,

e the maximal cliques,

e the maximal independent sets,

e the minimal closed neighborhoods,

e the minimal dominating sets.

Let ¥ be a monotone Boolean function such that its prime implicant
hypergraph Hy is of one of the above types.

When is f threshold?



the edges

threshold

the minimal vertex covers,

the maximal cliques

the maximal independent sets

the minimal closed neighborhoods

2-asummable

threshold

the minimal dominating sets




threshold

threshold graphs
o the edges (Chvétal, Hammer, 1977)

e the minimal vertex covers,

2-asummable

e the maximal cliques

threshold

e the maximal independent sets T

1-Sperner

e the minimal closed neighborhoods

e the minimal dominating sets

domishold graphs
(Benzaken, Hammer, 1978)

Reference: Boros, Gurvich, M. Characterizing and decomposing classes of threshold, split, and
bipartite graphs via 1-Sperner hypergraphs, J. Graph Theory 94 (2020) 364-397.



Construction of 1-Sperner hypergraphs



Hi = (Va, E1) and Ho = (Va, E2) — vertex-disjoint hypergraphs

Z — a new vertex

The gluing of H: and H; is the hypergraph
H="Hi1OH

such that

V(H)=WViuVoU{z}

and
E(H)={{z}Ue|e€e Ei}U{ViUe|e€ E}.



The operation of gluing can be visualized easily in terms of incidence matrices.

Every hypergraph H = (V, E) with
V=A{vi,....,vn} and E ={e1,...,en}

can be represented with its
incidence matrix A™ ¢ {0,1}"*":
rows are indexed by hyperedges of H,

columns are indexed by vertices of H,
and

A'H o ].7 if Vj € e;
" 0, otherwise.



H1 ® Ha, then

If H =

A’Hl Oml ny
1m2:m A'Hz .

1m1 1
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Proposition
For every pair H1 = (Vi, E1) and H, = (W2, E>) of vertex-disjoint 1-Sperner
hypergraphs,

their gluing H1 ® Ho is a 1-Sperner hypergraph,
unless E; = {V4} and E; = {0}

(in which case Hi1 ® Ha is not Sperner).

20



We show that every 1-Sperner hypergraph that has a vertex can be generated
as a gluing of two smaller 1-Sperner hypergraphs.

We say that a gluing of two vertex-disjoint hypergraphs H; = (V4, E1) and
Ho = (Vo, E) is safe unless E; = {Vi} and E, = {0}.

Theorem

A hypergraph H is 1-Sperner if and only if
it either has no vertices (that is, H € {(0,0), (0, {0})})
or it is a safe gluing of two smaller 1-Sperner hypergraphs.

Reference: Boros, Gurvich, M. Decomposing 1-Sperner hypergraphs
The Electronic Journal of Combinatorics 26(3) (2019), #P3.18.
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Consequences

22



The construction for 1-Sperner hypergraphs has several consequences:

1. An alternative proof of the fact that
every 1-Sperner Boolean function is threshold.

? {1,2,3,4} t=3
=l o
1 w(x)

{123} ¢ {L24) g

[FNEUN R

e

The proof is constructive and builds the corresponding weights and
threshold.
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2. A proof of the fact that every 1-Sperner hypergraph is equilizable.

{1,2,3,4}

Equilizable hypergraphs can be seen as a generalization of equistable
graphs (introduced in 1980 by Payan and studied afterwards in many

papers).

24



3. An upper bound on the size of 1-Sperner hypergraphs.

Proposition
For every 1-Sperner hypergraph H = (V, E) with E # {0}, we have
|El <|VI.

e Proof idea: we show that the characteristic vectors of the hyperedges are
linearly independent over the reals.

25



4. A lower bound on the size of certain 1-Sperner hypergraphs.

Proposition
For every 1-Sperner hypergraph H = (V, E) with |V| > 2 and without
universal, isolated, and twin vertices, we have

g ER L iy

This bound is sharp.

26



Given a hypergraph H = (V, E), a transversal of H is a set of vertices
intersecting all hyperedges of .

The transversal hypergraph # " is the hypergraph with vertex set V in which
aset S C Vis a hyperedge if and only if S is an inclusion-minimal transversal
of H.

27



5. An efficient algorithm for computing the transversal hypergraph of a given
1-Sperner hypergraph.

Theorem

The number of minimal transversals of every 1-Sperner hypergraph

H = (V,E) is at most
V|
max{l,|V|7<2 .

Moreover, the transversal hypergraph H' of a given 1-Sperner hypergraph
H = (V, E) can be computed in time O(|V|*|E|).

This bound is sharp.

28



Applications to graphs: new classes of bounded clique-width

29



The construction of 1-Sperner hypergraphs leads to

new classes of bipartite, cobipartite, and split graphs of bounded clique-width.

30



clique-width of a graph G = (V/, E) = smallest number of labels in a
k-expression constructing (a graph isomorphic to) G

A k-expression is an algebraic expression building a graph together with labels
Lv)e{l,... k} forallveV,

using the following operations:

e /,, Le{l,... k}: creating a new one-vertex graph with vertex v
labeled 2,

e G @ H: disjoint union
e i j(G) fori,je{l,..., k},i#j: add edges

o pij(G) fori,je{l,... k}, i#j: relabel

31



Example:

The following expression builds a complete graph minus an edge using only
labels 1 and 2 (yellow and blue, respectively):

M2 (P21 (m.2 (1(a) ® 2(b))) @ (2(c) @ 2(d)))

32



Many algorithmic decision or optimization problems on graphs that are NP-hard
for general graphs can be solved in polynomial time on graph classes of
bounded clique-width (often in linear time if a k-expression is known).

In particular, there is a metatheorem of Courcelle, Makowsky, and Rotics
(2000).

33



We illustrate the idea on the class of split graphs (introduced by Fdldes and
Hammer in 1977).

A graph is split if has a split partition, that is, a partition (C, /) of the vertex
set into a clique and an independent set.

independent set

clique

34



The clique-width of split graphs is known to be unbounded.

It remains unbounded even for H-free split graphs, as shown by Brandstadt,
Dabrowski, Huang, Paulusma (in 2016).



We show that the construction of 1-Sperner hypergraphs leads to

a 5-expression of a given H-free split graph G with a split partition (C, /)
provided that

the neighborhoods in / of vertices in C are pairwise incomparable.
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Idea of the transformation



Given a split graph G with a split partition (C, /), define a hypergraph
H=(V,E)with V=1and E={N(v)NIl:veC}.

U U2 U3z Ug U5 Ug U7 US

vr/1 1 0 0 0 0 0 O
201 0 1.0 0 0 0 O
A=wv3l 01 1 1 1 1 10
v4l 01 1 1 1 1 0 1
vs\0 1 1 1 1 0 1 1

Since the neighborhoods in I of vertices in C are pairwise incomparable, H is

Sperner.

Since G is H-free, H is also 1-Sperner.



We decompose ...

z
Il
Ul Uy U3 Ug Us Ug U Us
v/ 111 0 0[O0 0 O O
v21 110 1 0|0 0 0 O
At=w|l 01 1 1[1 1 1 0
vel Of1 1 1|1 1 0 1
vs\ 01 1 111 0 1 1
incidence matrix of hypergraph H = H; © Ha
1 ERE
I o v/ 1 0 0
A‘:U 01 0 A2 — vy 1 1 0 1
2 v\ 1 0 1 1



. and use induction!

first relabel

4,5
1,2,3

—
/ then take @&

add missing
edges

%

5

1@,

3]
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This result leads to efficient algorithms for three basic variants of the
dominating set problem in the class of H-free split graphs.

Given a graph G = (V,E), aset SC Vis:

e a dominating set if every vertex in V' \ S has a neighbor in S,
e a total dominating set if every vertex has a neighbor in S,

e a connected dominating set if it is a dominating set that induces a
connected subgraph of G.
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Theorem

The problems of finding a minimum dominating set / total dominating set /
connected dominating set

are solvable in time O(|V/(G)|?) in the class of H-free split graphs.

This result is sharp in the sense that all three problems are known to be
NP-hard:

e in the class of split graphs,

e in the class of H-free graphs.
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Thank you!

Questions?
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