Decomposing 1-Sperner Boolean functions, with applications to graphs

Boolean Seminar Liblice 2023 September 24–28, 2023, Liblice, Czech Republic

Endre Boros¹, Vladimir Gurvich^{1,2}, Martin Milanič³ September 25, 2023

¹ Rutgers University, New Jersey, USA
 ² National Research University Higher School of Economics, Moscow, Russia
 ³ University of Primorska, Koper, Slovenia

Happy Birthday Endre!!

Goal of the talk

To describe:

- a class of combinatorially defined threshold monotone Boolean functions,
- a construction of all such functions,
- applications to structural and algorithmic graph theory.

Given two binary vectors $x, y \in \{0, 1\}^n$, we write $x \le y$ if $x_i \le y_i$ for all $i \in \{1, ..., n\}$.

A Boolean function $f : \{0,1\}^n \to \{0,1\}$ is monotone if for all $x, y \in \{0,1\}^n$:

$$x \leq y \quad \Rightarrow \quad f(x) \leq f(y)$$
.

A Boolean function is monotone if and only if it can be represented by a monotone DNF.

Example:

$$f(x_1, x_2, x_3, x_4) = x_1 x_2 \lor x_3 x_4 \lor x_1 x_2 x_4$$

An **implicant** of a Boolean function $f : \{0,1\}^n \to \{0,1\}$ is a conjuction C of literals that implies f:

 $C(x) \le f(x)$ for all $x \in \{0, 1\}^n$.

An implicant is prime if it does not imply any other implicant.

Example: For the function *f* given by the DNF

 $x_1x_2 \vee x_3x_4 \vee x_1x_2x_4$,

each of the three terms of the DNF is an implicant of f. However, the implicant $x_1x_2x_4$ is not prime, since it implies the implicant x_1x_2 .

Every monotone Boolean function has a **unique irredundant DNF**, namely the disjunction of all its prime implicants.

Example: The unique irredundant DNF of the function f from the previous example is $x_1x_2 \lor x_3x_4$.

Every Boolean function $f: \{0,1\}^n \to \{0,1\}$ partitions the Boolean hypercube $\{0,1\}^n$ into two sets V_0 and V_1 , where

 $V_0 = \{x \in \{0,1\}^n : f(x) = 0\}$ is the set of **false points** of f, and

 $V_1 = \{x \in \{0, 1\}^n : f(x) = 1\}$ is the set of **true points** of *f*.

A Boolean function f is **threshold** if its sets of false points and true points can be separated by a hyperplane, that is, if there exist real numbers w_1, \ldots, w_n, t such that

$$f(x)=0$$
 if and only if $\sum_{i=1}^n w_i x_i \leq t$.

Question: Given a monotone Boolean function represented by a DNF, how difficult it is to check if it is threshold?

Theorem (Peled, Simeone, 1985)

There is a polynomial-time algorithm that determines, given a monotone Boolean function f represented by a DNF, whether f is threshold.

The algorithm is based on linear programming.

Recall that the goal of the talk is to describe:

- a class of combinatorially defined threshold monotone Boolean functions,
- a construction of all such functions,
- applications to structural and algorithmic graph theory.

A hypergraph is a pair (V, E) where V is a set of vertices and E is a set of subsets of V called hyperedges.

To every monotone Boolean function $f : \{0,1\}^n \to \{0,1\}$ we associate its prime implicant hypergraph \mathcal{H}_f :

- $V = \{1, ..., n\},$
- a set S ⊆ {1,...,n} is a hyperedge if and only if ∧_{i∈S} x_i is a prime implicant of f.

By construction, the prime implicant hypergraph \mathcal{H}_f is always **Sperner**: no hyperedge contains another.

Example:

Let $f = x_1 x_2 \vee x_3 x_4$.

Then $\mathcal{H}_f = (\{1, 2, 3, 4\}, \{\{1, 2\}, \{3, 4\}\}).$

Note that a hypergraph $\mathcal{H} = (V, E)$ is Sperner if and only if any two distinct hyperedges $e, f \in E$ satisfy

$$\min\{|e \setminus f|, |f \setminus e|\} \ge 1.$$

A hypergraph is $\mathcal{H} = (V, E)$ **1-Sperner** if any two distinct hyperedges $e, f \in E$ satisfy

$$\min\{|e \setminus f|, |f \setminus e|\} = 1,$$

that is, if **for every two hyperedges** the smallest of the two set differences is of size one.

V

By definition, a monotone Boolean function f is 1-Sperner if its prime implicant hypergraph is 1-Sperner.

Proposition (Chiarelli, M., WG 2013, DAM 2014)

Every 1-Sperner Boolean function is threshold.

The proof does not show how to compute the threshold weights.

It is based on a characterization of threshold Boolean functions via asummability due to Chow (1961) and Elgot (1961) (which itself relies on Farkas' Lemma / separation of convex polyhedra).

In general, the geometrically defined thresholdness property is sandwiched between two combinatorially defined properties:

A Boolean function f is 2-summable if there exist two true points x^1, x^2 and two false points y^1, y^2 such that

$$x^1 + x^2 = y^1 + y^2 \,.$$

It is 2-asummable if it is not 2-summable.

Example: The function $f = x_1x_2 \lor x_3x_4$ is 2-summable, as verified by: $x^1 = (1, 1, 0, 0), x^2 = (0, 0, 1, 1)$ $y^1 = (1, 0, 1, 0), y^2 = (0, 1, 0, 1)$

In particular, f is not threshold, since it is not 2-asummable.

In general, none of the implications in the diagram can be reversed.

However, for some classes of monotone Boolean functions arising from graphs, 2-asummability implies thresholdness or even 1-Spernerness.

In such cases, the thresholdness property admits a simple combinatorial characterization.

To every graph G, we can associate a hypergraph \mathcal{H} with vertex set V(G) in many ways, for example, by taking for hyperedges:

- the edges,
- the minimal vertex covers,
- the maximal cliques,
- the maximal independent sets,
- the minimal closed neighborhoods,
- the minimal dominating sets.

Let f be a monotone Boolean function such that its prime implicant hypergraph \mathcal{H}_f is of one of the above types.

When is f threshold?

Reference: Boros, Gurvich, M. Characterizing and decomposing classes of threshold, split, and bipartite graphs via 1-Sperner hypergraphs, *J. Graph Theory* 94 (2020) 364–397.

Construction of 1-**Sperner hypergraphs**

 $\mathcal{H}_1 = (V_1, E_1)$ and $\mathcal{H}_2 = (V_2, E_2)$ – vertex-disjoint hypergraphs

z - a new vertex

The gluing of \mathcal{H}_1 and \mathcal{H}_2 is the hypergraph

 $\mathcal{H}=\mathcal{H}_1\odot\mathcal{H}_2$

such that

 $V(\mathcal{H}) = \mathbf{V}_1 \cup \mathbf{V}_2 \cup \{z\}$

and

 $E(\mathcal{H}) = \{\{z\} \cup e \mid e \in E_1\} \cup \{V_1 \cup e \mid e \in E_2\}.$

The operation of gluing can be visualized easily in terms of incidence matrices.

Every hypergraph $\mathcal{H} = (V, E)$ with $V = \{v_1, \dots, v_n\}$ and $E = \{e_1, \dots, e_m\}$

can be represented with its incidence matrix $A^{\mathcal{H}} \in \{0, 1\}^{m \times n}$: rows are indexed by hyperedges of \mathcal{H} , columns are indexed by vertices of \mathcal{H} ,

 and

$$A_{i,j}^{\mathcal{H}} = \left\{ egin{array}{cc} 1, & ext{if } v_j \in e_i; \ 0, & ext{otherwise.} \end{array}
ight.$$

If $\mathcal{H} = \mathcal{H}_1 \odot \mathcal{H}_2$, then

$$egin{array}{lll} {\cal A}^{{\cal H}_1 \odot {\cal H}_2} = \left(egin{array}{ccc} {f 1}^{m_1,1} & {\cal A}^{{\cal H}_1} & {f 0}^{m_1,n_2} \ {f 0}^{m_2,1} & {f 1}^{m_2,n_1} & {\cal A}^{{\cal H}_2} \end{array}
ight) \,.$$

Example:

$$A^{\mathcal{H}_{1}} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$A^{\mathcal{H}_{2}} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \longrightarrow A^{\mathcal{H}_{1} \odot \mathcal{H}_{2}} = \begin{pmatrix} z \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Proposition

For every pair $\mathcal{H}_1 = (V_1, E_1)$ and $\mathcal{H}_2 = (V_2, E_2)$ of vertex-disjoint 1-Sperner hypergraphs,

their gluing $\mathcal{H}_1 \odot \mathcal{H}_2$ is a 1-Sperner hypergraph,

unless $E_1 = \{V_1\}$ and $E_2 = \{\emptyset\}$

(in which case $\mathcal{H}_1 \odot \mathcal{H}_2$ is not Sperner).

$$A^{\mathcal{H}_{1}} = \begin{pmatrix} 1 & 1 \end{pmatrix}$$

$$A^{\mathcal{H}_{2}} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$$

$$A^{\mathcal{H}_{2}} = \begin{pmatrix} z \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

We show that every 1-Sperner hypergraph that has a vertex can be generated as a gluing of two smaller 1-Sperner hypergraphs.

We say that a gluing of two vertex-disjoint hypergraphs $\mathcal{H}_1 = (V_1, E_1)$ and $\mathcal{H}_2 = (V_2, E_2)$ is safe unless $E_1 = \{V_1\}$ and $E_2 = \{\emptyset\}$.

Theorem

A hypergraph \mathcal{H} is 1-Sperner if and only if

it either has no vertices (that is, $\mathcal{H} \in \{(\emptyset, \emptyset), (\emptyset, \{\emptyset\})\}$)

or it is a safe gluing of two smaller 1-Sperner hypergraphs.

Reference: Boros, Gurvich, M. Decomposing 1-Sperner hypergraphs The Electronic Journal of Combinatorics 26(3) (2019), #P3.18. Consequences

The construction for 1-Sperner hypergraphs has several consequences:

1. An alternative proof of the fact that every 1-Sperner Boolean function is threshold.

The proof is constructive and builds the corresponding weights and threshold.

2. A proof of the fact that every 1-Sperner hypergraph is equilizable.

Equilizable hypergraphs can be seen as a generalization of **equistable graphs** (introduced in 1980 by Payan and studied afterwards in many papers).

3. An upper bound on the size of 1-Sperner hypergraphs.

Proposition

For every 1-Sperner hypergraph $\mathcal{H} = (V, E)$ with $E \neq \{\emptyset\}$, we have $|E| \leq |V|$.

• Proof idea: we show that the characteristic vectors of the hyperedges are linearly independent over the reals.

4. A lower bound on the size of certain 1-Sperner hypergraphs.

Proposition

For every 1-Sperner hypergraph $\mathcal{H} = (V, E)$ with $|V| \ge 2$ and without universal, isolated, and twin vertices, we have

$$|E| \geq \left\lceil \frac{|V|+2}{2} \right\rceil.$$

This bound is sharp.

Given a hypergraph $\mathcal{H} = (V, E)$, a **transversal** of \mathcal{H} is a set of vertices intersecting all hyperedges of \mathcal{H} .

The **transversal hypergraph** \mathcal{H}^{T} is the hypergraph with vertex set V in which a set $S \subseteq V$ is a hyperedge if and only if S is an inclusion-minimal transversal of \mathcal{H} .

5. An efficient algorithm for computing the transversal hypergraph of a given 1-Sperner hypergraph.

Theorem

The number of minimal transversals of every 1-Sperner hypergraph $\mathcal{H} = (V, E)$ is at most

$$\max\left\{1, |V|, \binom{|V|}{2}\right\}.$$

This bound is sharp.

Moreover, the transversal hypergraph \mathcal{H}^{T} of a given 1-Sperner hypergraph $\mathcal{H} = (V, E)$ can be computed in time $\mathcal{O}(|V|^{3}|E|)$.

Applications to graphs: new classes of bounded clique-width

The construction of 1-Sperner hypergraphs leads to

new classes of bipartite, cobipartite, and split graphs of bounded clique-width.

clique-width of a graph G = (V, E) = smallest number of labels in a *k*-expression constructing (a graph isomorphic to) *G*

A *k*-expression is an algebraic expression building a graph together with labels $\ell(v) \in \{1, \dots, k\}$ for all $v \in V$,

using the following operations:

- ℓ_v, ℓ ∈ {1,..., k}: creating a new one-vertex graph with vertex v labeled ℓ,
- $G \oplus H$: disjoint union
- $\eta_{i,j}(G)$ for $i,j \in \{1,\ldots,k\}, i \neq j$: add edges
- $\rho_{i \rightarrow j}(G)$ for $i, j \in \{1, \dots, k\}, i \neq j$: relabel

Example:

The following expression builds a complete graph minus an edge using only labels 1 and 2 (yellow and blue, respectively):

```
\eta_{1,2}\left(
ho_{2
ightarrow 1}\left(\eta_{1,2}\left(1(a)\oplus 2(b)
ight)
ight)\oplus\left(2(c)\oplus 2(d)
ight)
ight)
```


Many algorithmic decision or optimization problems on graphs that are NP-hard for general graphs can be solved **in polynomial time on graph classes of bounded clique-width** (often in linear time if a *k*-expression is known).

In particular, there is a metatheorem of Courcelle, Makowsky, and Rotics (2000).

We illustrate the idea on the class of **split graphs** (introduced by Földes and Hammer in 1977).

A graph is **split** if has a **split partition**, that is, a partition (C, I) of the vertex set into a clique and an independent set.

The clique-width of split graphs is known to be unbounded.

It remains unbounded even for *H*-free split graphs, as shown by Brandstädt, Dabrowski, Huang, Paulusma (in 2016).

We show that the construction of 1-Sperner hypergraphs leads to a 5-expression of a given *H*-free split graph *G* with a split partition (C, I)

provided that

the neighborhoods in / of vertices in C are pairwise incomparable.

Idea of the transformation

Given a split graph G with a split partition (C, I), define a hypergraph $\mathcal{H} = (V, E)$ with V = I and $E = \{N(v) \cap I : v \in C\}$.

Since the neighborhoods in I of vertices in C are pairwise incomparable, \mathcal{H} is **Sperner**.

Since G is H-free, \mathcal{H} is also 1-Sperner.

We decompose ...

... and use induction!

This result leads to **efficient algorithms** for three basic variants of the **dominating set problem** in the class of *H*-free split graphs.

Given a graph G = (V, E), a set $S \subseteq V$ is:

- a **dominating set** if every vertex in $V \setminus S$ has a neighbor in S,
- a total dominating set if every vertex has a neighbor in S,
- a **connected dominating set** if it is a dominating set that induces a connected subgraph of *G*.

Theorem

The problems of finding a minimum dominating set / total dominating set / connected dominating set

are solvable in time $\mathcal{O}(|V(G)|^3)$ in the class of H-free split graphs.

This result is sharp in the sense that all three problems are known to be NP-hard:

- in the class of split graphs,
- in the class of *H*-free graphs.

Thank you!

Questions?