Decomposing 1-Sperner Boolean functions, with applications to graphs

Boolean Seminar Liblice 2023

September 24-28, 2023, Liblice, Czech Republic

Endre Boros ${ }^{1}$, Vladimir Gurvich ${ }^{1,2}$, Martin Milanič ${ }^{3}$

September 25, 2023
${ }^{1}$ Rutgers University, New Jersey, USA
2 National Research University Higher School of Economics, Moscow, Russia
${ }^{3}$ University of Primorska, Koper, Slovenia
 UNIVERSITY

P
UNIVER $D^{?}$

Happy Birthday Endre!!

Goal of the talk

To describe:

- a class of combinatorially defined threshold monotone Boolean functions,
- a construction of all such functions,
- applications to structural and algorithmic graph theory.

Given two binary vectors $x, y \in\{0,1\}^{n}$, we write $x \leq y$ if $x_{i} \leq y_{i}$ for all $i \in\{1, \ldots, n\}$.

A Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is monotone if for all $x, y \in\{0,1\}^{n}$:

$$
x \leq y \quad \Rightarrow \quad f(x) \leq f(y) .
$$

A Boolean function is monotone if and only if it can be represented by a monotone DNF.

Example:

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2} \vee x_{3} x_{4} \vee x_{1} x_{2} x_{4}
$$

An implicant of a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a conjuction C of literals that implies f :

$$
C(x) \leq f(x) \text { for all } x \in\{0,1\}^{n}
$$

An implicant is prime if it does not imply any other implicant.
Example: For the function f given by the DNF

$$
x_{1} x_{2} \vee x_{3} x_{4} \vee x_{1} x_{2} x_{4},
$$

each of the three terms of the DNF is an implicant of f.
However, the implicant $x_{1} x_{2} x_{4}$ is not prime, since it implies the implicant $x_{1} x_{2}$.

Every monotone Boolean function has a unique irredundant DNF, namely the disjunction of all its prime implicants.

Example: The unique irredundant DNF of the function f from the previous example is $x_{1} x_{2} \vee x_{3} x_{4}$.

Every Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ partitions the Boolean hypercube $\{0,1\}^{n}$ into two sets V_{0} and V_{1}, where
$V_{0}=\left\{x \in\{0,1\}^{n}: f(x)=0\right\}$ is the set of false points of f, and
$V_{1}=\left\{x \in\{0,1\}^{n}: f(x)=1\right\}$ is the set of true points of f.

A Boolean function f is threshold if its sets of false points and true points can be separated by a hyperplane, that is, if there exist real numbers w_{1}, \ldots, w_{n}, t such that

$$
f(x)=0 \quad \text { if and only if } \quad \sum_{i=1}^{n} w_{i} x_{i} \leq t
$$

Question: Given a monotone Boolean function represented by a DNF, how difficult it is to check if it is threshold?

```
Theorem (Peled, Simeone, 1985)
There is a polynomial-time algorithm that determines, given a monotone
Boolean function f represented by a DNF, whether f is threshold.
```

The algorithm is based on linear programming.

Recall that the goal of the talk is to describe:

- a class of combinatorially defined threshold monotone Boolean functions,
- a construction of all such functions,
- applications to structural and algorithmic graph theory.

A hypergraph is a pair (V, E) where V is a set of vertices and E is a set of subsets of V called hyperedges.

To every monotone Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ we associate its prime implicant hypergraph \mathcal{H}_{f} :

- $V=\{1, \ldots, n\}$,
- a set $S \subseteq\{1, \ldots, n\}$ is a hyperedge if and only if $\bigwedge_{i \in S} x_{i}$ is a prime implicant of f.

By construction, the prime implicant hypergraph \mathcal{H}_{f} is always Sperner: no hyperedge contains another.

Example:

Let $f=x_{1} x_{2} \vee x_{3} x_{4}$.
Then $\mathcal{H}_{f}=(\{1,2,3,4\},\{\{1,2\},\{3,4\}\})$.

Note that a hypergraph $\mathcal{H}=(V, E)$ is Sperner if and only if any two distinct hyperedges $e, f \in E$ satisfy

$$
\min \{|e \backslash f|,|f \backslash e|\} \geq 1
$$

A hypergraph is $\mathcal{H}=(V, E) 1$-Sperner if any two distinct hyperedges $e, f \in E$ satisfy

$$
\min \{|e \backslash f|,|f \backslash e|\}=1
$$

that is, if for every two hyperedges the smallest of the two set differences is of size one.

$$
V
$$

By definition, a monotone Boolean function f is 1-Sperner if its prime implicant hypergraph is 1-Sperner.

Proposition (Chiarelli, M., WG 2013, DAM 2014)
 Every 1-Sperner Boolean function is threshold.

The proof does not show how to compute the threshold weights.
It is based on a characterization of threshold Boolean functions via asummability due to Chow (1961) and Elgot (1961) (which itself relies on Farkas' Lemma / separation of convex polyhedra).

In general, the geometrically defined thresholdness property is sandwiched between two combinatorially defined properties:

A Boolean function f is 2-summable if there exist two true points x^{1}, x^{2} and two false points y^{1}, y^{2} such that

$$
x^{1}+x^{2}=y^{1}+y^{2} .
$$

It is 2-asummable if it is not 2-summable.

Example: The function $f=x_{1} x_{2} \vee x_{3} x_{4}$ is 2 -summable, as verified by:
$x^{1}=(1,1,0,0), x^{2}=(0,0,1,1)$
$y^{1}=(1,0,1,0), y^{2}=(0,1,0,1)$
In particular, f is not threshold, since it is not 2-asummable.

In general, none of the implications in the diagram can be reversed.

However, for some classes of monotone Boolean functions arising from graphs, 2-asummability implies thresholdness or even 1-Spernerness.

In such cases, the thresholdness property admits a simple combinatorial characterization.

To every graph G, we can associate a hypergraph \mathcal{H} with vertex set $V(G)$ in many ways, for example, by taking for hyperedges:

- the edges,
- the minimal vertex covers,
- the maximal cliques,
- the maximal independent sets,
- the minimal closed neighborhoods,
- the minimal dominating sets.

Let f be a monotone Boolean function such that its prime implicant hypergraph \mathcal{H}_{f} is of one of the above types.

When is f threshold?

- the edges

- the minimal vertex covers,
- the maximal cliques
- the maximal independent sets
- the minimal closed neighborhoods

- the minimal dominating sets

Reference: Boros, Gurvich, M. Characterizing and decomposing classes of threshold, split, and bipartite graphs via 1-Sperner hypergraphs, J. Graph Theory 94 (2020) 364-397.

Construction of 1-Sperner hypergraphs
$\mathcal{H}_{1}=\left(V_{1}, E_{1}\right)$ and $\mathcal{H}_{2}=\left(V_{2}, E_{2}\right)$ - vertex-disjoint hypergraphs
z - a new vertex

The gluing of \mathcal{H}_{1} and \mathcal{H}_{2} is the hypergraph

$$
\mathcal{H}=\mathcal{H}_{1} \odot \mathcal{H}_{2}
$$

such that

$$
V(\mathcal{H})=V_{1} \cup V_{2} \cup\{z\}
$$

and

$$
E(\mathcal{H})=\left\{\{z\} \cup e \mid e \in E_{1}\right\} \cup\left\{V_{1} \cup e \mid e \in E_{2}\right\}
$$

The operation of gluing can be visualized easily in terms of incidence matrices.

Every hypergraph $\mathcal{H}=(V, E)$ with
$V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{e_{1}, \ldots, e_{m}\right\}$
can be represented with its
incidence matrix $A^{\mathcal{H}} \in\{0,1\}^{m \times n}$:
rows are indexed by hyperedges of \mathcal{H},
columns are indexed by vertices of \mathcal{H},
and

$$
A_{i, j}^{\mathcal{H}}= \begin{cases}1, & \text { if } v_{j} \in e_{i} \\ 0, & \text { otherwise }\end{cases}
$$

If $\mathcal{H}=\mathcal{H}_{1} \odot \mathcal{H}_{2}$, then

$$
A^{\mathcal{H}_{1} \odot \mathcal{H}_{2}}=\left(\begin{array}{ccc}
\mathbf{1}^{m_{1}, 1} & A^{\mathcal{H}_{1}} & \mathbf{0}^{m_{1}, n_{2}} \\
\mathbf{0}^{m_{2}, 1} & \mathbf{1}^{m_{2}, n_{1}} & A^{\mathcal{H}_{2}}
\end{array}\right) .
$$

Example:

$\begin{aligned} A^{\mathcal{H}_{1}} & =\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right) \\ A^{\mathcal{H}_{2}} & =\left(\begin{array}{llll}1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right) \longrightarrow A^{\mathcal{H}_{1} \odot \mathcal{H}_{2}}=\left(\begin{array}{c|ccc|cccc}1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1\end{array}\right)\end{aligned}$

Proposition

For every pair $\mathcal{H}_{1}=\left(V_{1}, E_{1}\right)$ and $\mathcal{H}_{2}=\left(V_{2}, E_{2}\right)$ of vertex-disjoint 1-Sperner hypergraphs,
their gluing $\mathcal{H}_{1} \odot \mathcal{H}_{2}$ is a 1-Sperner hypergraph,
unless $E_{1}=\left\{V_{1}\right\}$ and $E_{2}=\{\emptyset\}$
(in which case $\mathcal{H}_{1} \odot \mathcal{H}_{2}$ is not Sperner).

$$
\begin{gathered}
A^{\mathcal{H}_{1}}=\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
A^{\mathcal{H}_{2}}=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)
\end{gathered} \longrightarrow A^{z} \mathcal{H}_{1} \odot \mathcal{H}_{2}=\left(\begin{array}{c|cc|ccc}
1 & 1 & 1 & 0 & 0 & 0 \\
\hline 0 & 1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

We show that every 1-Sperner hypergraph that has a vertex can be generated as a gluing of two smaller 1-Sperner hypergraphs.

We say that a gluing of two vertex-disjoint hypergraphs $\mathcal{H}_{1}=\left(V_{1}, E_{1}\right)$ and $\mathcal{H}_{2}=\left(V_{2}, E_{2}\right)$ is safe unless $E_{1}=\left\{V_{1}\right\}$ and $E_{2}=\{\emptyset\}$.

Theorem

A hypergraph \mathcal{H} is 1 -Sperner if and only if
it either has no vertices (that is, $\mathcal{H} \in\{(\emptyset, \emptyset),(\emptyset,\{\emptyset\})\})$
or it is a safe gluing of two smaller 1-Sperner hypergraphs.

Reference: Boros, Gurvich, M. Decomposing 1-Sperner hypergraphs The Electronic Journal of Combinatorics 26(3) (2019), \#P3.18.

Consequences

The construction for 1-Sperner hypergraphs has several consequences:

1. An alternative proof of the fact that every 1-Sperner Boolean function is threshold.

The proof is constructive and builds the corresponding weights and threshold.
2. A proof of the fact that every 1-Sperner hypergraph is equilizable.

Equilizable hypergraphs can be seen as a generalization of equistable graphs (introduced in 1980 by Payan and studied afterwards in many papers).
3. An upper bound on the size of 1-Sperner hypergraphs.

Proposition

For every 1-Sperner hypergraph $\mathcal{H}=(V, E)$ with $E \neq\{\emptyset\}$, we have $|E| \leq|V|$.

- Proof idea: we show that the characteristic vectors of the hyperedges are linearly independent over the reals.

4. A lower bound on the size of certain 1-Sperner hypergraphs.

Proposition

For every 1-Sperner hypergraph $\mathcal{H}=(V, E)$ with $|V| \geq 2$ and without universal, isolated, and twin vertices, we have

$$
|E| \geq\left\lceil\frac{|V|+2}{2}\right\rceil
$$

This bound is sharp.

Given a hypergraph $\mathcal{H}=(V, E)$, a transversal of \mathcal{H} is a set of vertices intersecting all hyperedges of \mathcal{H}.

The transversal hypergraph \mathcal{H}^{T} is the hypergraph with vertex set V in which a set $S \subseteq V$ is a hyperedge if and only if S is an inclusion-minimal transversal of \mathcal{H}.
5. An efficient algorithm for computing the transversal hypergraph of a given 1-Sperner hypergraph.

Theorem

The number of minimal transversals of every 1-Sperner hypergraph $\mathcal{H}=(V, E)$ is at most

$$
\max \left\{1,|V|,\binom{|V|}{2}\right\}
$$

This bound is sharp.

Moreover, the transversal hypergraph \mathcal{H}^{T} of a given 1-Sperner hypergraph $\mathcal{H}=(V, E)$ can be computed in time $\mathcal{O}\left(|V|^{3}|E|\right)$.

Applications to graphs: new classes of bounded clique-width

The construction of 1-Sperner hypergraphs leads to new classes of bipartite, cobipartite, and split graphs of bounded clique-width.
clique-width of a graph $G=(V, E)=$ smallest number of labels in a k-expression constructing (a graph isomorphic to) G

A k-expression is an algebraic expression building a graph together with labels $\ell(v) \in\{1, \ldots, k\}$ for all $v \in V$,
using the following operations:

- $\ell_{v}, \ell \in\{1, \ldots, k\}$: creating a new one-vertex graph with vertex v labeled ℓ,
- $G \oplus H$: disjoint union
- $\eta_{i, j}(G)$ for $i, j \in\{1, \ldots, k\}, i \neq j$: add edges
- $\rho_{i \rightarrow j}(G)$ for $i, j \in\{1, \ldots, k\}, i \neq j$: relabel

Example:

The following expression builds a complete graph minus an edge using only labels 1 and 2 (yellow and blue, respectively):

$$
\eta_{1,2}\left(\rho_{2 \rightarrow 1}\left(\eta_{1,2}(1(a) \oplus 2(b))\right) \oplus(2(c) \oplus 2(d))\right)
$$

Many algorithmic decision or optimization problems on graphs that are NP-hard for general graphs can be solved in polynomial time on graph classes of bounded clique-width (often in linear time if a k-expression is known).

In particular, there is a metatheorem of Courcelle, Makowsky, and Rotics (2000).

We illustrate the idea on the class of split graphs (introduced by Földes and Hammer in 1977).

A graph is split if has a split partition, that is, a partition (C, I) of the vertex set into a clique and an independent set.
independent set

The clique-width of split graphs is known to be unbounded.

It remains unbounded even for H-free split graphs, as shown by Brandstädt, Dabrowski, Huang, Paulusma (in 2016).

We show that the construction of 1-Sperner hypergraphs leads to a 5 -expression of a given H-free split graph G with a split partition (C, I) provided that
the neighborhoods in / of vertices in C are pairwise incomparable.

Idea of the transformation

Given a split graph G with a split partition (C, I), define a hypergraph $\mathcal{H}=(V, E)$ with $V=I$ and $E=\{N(v) \cap I: v \in C\}$.

Since the neighborhoods in I of vertices in C are pairwise incomparable, \mathcal{H} is Sperner.

Since G is H-free, \mathcal{H} is also 1 -Sperner.

We decompose ...

incidence matrix of hypergraph $\mathcal{H}=\mathcal{H}_{1} \odot \mathcal{H}_{2}$
$A^{\mathcal{H}_{1}}=\begin{aligned} & u_{1} \\ & v_{2} \\ & u_{3}\end{aligned} u_{4}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$

$$
A^{\mathcal{H}_{2}}=\begin{gathered}
v_{3} \\
v_{4} \\
v_{5}
\end{gathered}\left(\begin{array}{cccc}
u_{5} & u_{6} & u_{7} & u_{8} \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right)
$$

... and use induction!

This result leads to efficient algorithms for three basic variants of the dominating set problem in the class of H -free split graphs.

Given a graph $G=(V, E)$, a set $S \subseteq V$ is:

- a dominating set if every vertex in $V \backslash S$ has a neighbor in S,
- a total dominating set if every vertex has a neighbor in S,
- a connected dominating set if it is a dominating set that induces a connected subgraph of G.

Theorem

The problems of finding a minimum dominating set / total dominating set / connected dominating set
are solvable in time $\mathcal{O}\left(|V(G)|^{3}\right)$ in the class of H-free split graphs.

This result is sharp in the sense that all three problems are known to be NP-hard:

- in the class of split graphs,
- in the class of H-free graphs.

Thank you!

Questions?

