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Happy Birthday Endre!!
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Goal of the talk

To describe:

• a class of combinatorially defined threshold monotone Boolean functions,

• a construction of all such functions,

• applications to structural and algorithmic graph theory.
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Given two binary vectors x , y ∈ {0, 1}n, we write x ≤ y if xi ≤ yi for all

i ∈ {1, . . . , n}.

A Boolean function f : {0, 1}n → {0, 1} is monotone if for all x , y ∈ {0, 1}n:

x ≤ y ⇒ f (x) ≤ f (y) .

A Boolean function is monotone if and only if it can be represented by a

monotone DNF.

Example:

f (x1, x2, x3, x4) = x1x2 ∨ x3x4 ∨ x1x2x4
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An implicant of a Boolean function f : {0, 1}n → {0, 1} is a conjuction C of

literals that implies f :

C(x) ≤ f (x) for all x ∈ {0, 1}n .

An implicant is prime if it does not imply any other implicant.

Example: For the function f given by the DNF

x1x2 ∨ x3x4 ∨ x1x2x4 ,

each of the three terms of the DNF is an implicant of f .

However, the implicant x1x2x4 is not prime, since it implies the implicant x1x2.

Every monotone Boolean function has a unique irredundant DNF, namely the

disjunction of all its prime implicants.

Example: The unique irredundant DNF of the function f from the previous

example is x1x2 ∨ x3x4.
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Every Boolean function f : {0, 1}n → {0, 1} partitions the Boolean hypercube

{0, 1}n into two sets V0 and V1, where

V0 = {x ∈ {0, 1}n : f (x) = 0} is the set of false points of f , and

V1 = {x ∈ {0, 1}n : f (x) = 1} is the set of true points of f .

A Boolean function f is threshold if its sets of false points and true points can

be separated by a hyperplane, that is, if there exist real numbers w1, . . . ,wn, t

such that

f (x) = 0 if and only if
n∑

i=1

wixi ≤ t .

Question: Given a monotone Boolean function represented by a DNF, how

difficult it is to check if it is threshold?
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Theorem (Peled, Simeone, 1985)

There is a polynomial-time algorithm that determines, given a monotone

Boolean function f represented by a DNF, whether f is threshold.

The algorithm is based on linear programming.

Recall that the goal of the talk is to describe:

• a class of combinatorially defined threshold monotone Boolean functions,

• a construction of all such functions,

• applications to structural and algorithmic graph theory.
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A hypergraph is a pair (V ,E) where V is a set of vertices and E is a set of

subsets of V called hyperedges.

To every monotone Boolean function f : {0, 1}n → {0, 1} we associate its

prime implicant hypergraph Hf :

• V = {1, . . . , n},

• a set S ⊆ {1, . . . , n} is a hyperedge if and only if
∧

i∈S xi is a prime

implicant of f .

By construction, the prime implicant hypergraph Hf is always Sperner:

no hyperedge contains another.

Example:

Let f = x1x2 ∨ x3x4.

Then Hf = ({1, 2, 3, 4}, {{1, 2}, {3, 4}}).
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Note that a hypergraph H = (V ,E) is Sperner if and only if any two distinct

hyperedges e, f ∈ E satisfy

min{|e \ f |, |f \ e|} ≥ 1 .

A hypergraph is H = (V ,E) 1-Sperner if any two distinct hyperedges e, f ∈ E

satisfy

min{|e \ f |, |f \ e|} = 1 ,

that is, if for every two hyperedges the smallest of the two set differences is

of size one.

V

e f
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By definition, a monotone Boolean function f is 1-Sperner if its prime

implicant hypergraph is 1-Sperner.

Proposition (Chiarelli, M., WG 2013, DAM 2014)

Every 1-Sperner Boolean function is threshold.

The proof does not show how to compute the threshold weights.

It is based on a characterization of threshold Boolean functions via

asummability due to Chow (1961) and Elgot (1961)

(which itself relies on Farkas’ Lemma / separation of convex polyhedra).
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In general, the geometrically defined thresholdness property is sandwiched

between two combinatorially defined properties:

2-asummable

1-Sperner

threshold

k-asummable for all k ≥ 2
=
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A Boolean function f is 2-summable if there exist two true points x1, x2 and

two false points y 1, y 2 such that

x1 + x2 = y 1 + y 2 .

It is 2-asummable if it is not 2-summable.

Example: The function f = x1x2 ∨ x3x4 is 2-summable, as verified by:

x1 = (1, 1, 0, 0), x2 = (0, 0, 1, 1)

y 1 = (1, 0, 1, 0), y 2 = (0, 1, 0, 1)

In particular, f is not threshold, since it is not 2-asummable.
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In general, none of the implications in the diagram can be reversed.

2-asummable

1-Sperner

threshold

k-asummable for all k ≥ 2
=

However, for some classes of monotone Boolean functions arising from graphs,

2-asummability implies thresholdness or even 1-Spernerness.

In such cases, the thresholdness property admits a simple combinatorial

characterization.
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To every graph G , we can associate a hypergraph H with vertex set V (G) in

many ways, for example, by taking for hyperedges:

• the edges,

• the minimal vertex covers,

• the maximal cliques,

• the maximal independent sets,

• the minimal closed neighborhoods,

• the minimal dominating sets.

Let f be a monotone Boolean function such that its prime implicant

hypergraph Hf is of one of the above types.

When is f threshold?
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the edges

the minimal vertex covers,

the maximal cliques

the maximal independent sets

the minimal closed neighborhoods

the minimal dominating sets

1-Sperner

threshold

2-asummable

threshold

2-asummable

Reference: Boros, Gurvich, M. Characterizing and decomposing classes of threshold, split, and

bipartite graphs via 1-Sperner hypergraphs, J. Graph Theory 94 (2020) 364–397.
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the edges

the minimal vertex covers,

the maximal cliques

the maximal independent sets

the minimal closed neighborhoods

the minimal dominating sets

1-Sperner

threshold

2-asummable

threshold graphs

(Chvátal, Hammer, 1977) threshold

2-asummable

domishold graphs

(Benzaken, Hammer, 1978)

Reference: Boros, Gurvich, M. Characterizing and decomposing classes of threshold, split, and

bipartite graphs via 1-Sperner hypergraphs, J. Graph Theory 94 (2020) 364–397.
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Construction of 1-Sperner hypergraphs

16



H1 = (V1,E1) and H2 = (V2,E2) – vertex-disjoint hypergraphs

z – a new vertex

The gluing of H1 and H2 is the hypergraph

H = H1 ⊙H2

such that

V (H) = V1 ∪ V2 ∪ {z}

and

E(H) = {{z} ∪ e | e ∈ E1} ∪ {V1 ∪ e | e ∈ E2} .
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The operation of gluing can be visualized easily in terms of incidence matrices.

Every hypergraph H = (V ,E) with

V = {v1, . . . , vn} and E = {e1, . . . , em}

can be represented with its

incidence matrix AH ∈ {0, 1}m×n:

rows are indexed by hyperedges of H,

columns are indexed by vertices of H,

and

AH
i,j =

{
1, if vj ∈ ei ;

0, otherwise.
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If H = H1 ⊙H2, then

AH1⊙H2 =

(
1m1,1 AH1 0m1,n2

0m2,1 1m2,n1 AH2

)
.

Example:

AH2 =

 1 1 0 1
1 0 1 0
0 1 1 1


AH1 =

(
1 0 1
0 1 1

)
AH1�H2 =


1 1 0 1 0 0 0 0
1 0 1 1 0 0 0 0
0 1 1 1 1 1 0 1
0 1 1 1 1 0 1 0
0 1 1 1 0 1 1 1



z
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Proposition

For every pair H1 = (V1,E1) and H2 = (V2,E2) of vertex-disjoint 1-Sperner

hypergraphs,

their gluing H1 ⊙H2 is a 1-Sperner hypergraph,

unless E1 = {V1} and E2 = {∅}

(in which case H1 ⊙H2 is not Sperner).

AH2 =
(
0 0 0

)
AH1 =

(
1 1

)
AH1�H2 =

(
1 1 1 0 0 0
0 1 1 0 0 0

)z
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We show that every 1-Sperner hypergraph that has a vertex can be generated

as a gluing of two smaller 1-Sperner hypergraphs.

We say that a gluing of two vertex-disjoint hypergraphs H1 = (V1,E1) and

H2 = (V2,E2) is safe unless E1 = {V1} and E2 = {∅}.

Theorem

A hypergraph H is 1-Sperner if and only if

it either has no vertices (that is, H ∈ {(∅, ∅), (∅, {∅})})

or it is a safe gluing of two smaller 1-Sperner hypergraphs.

Reference: Boros, Gurvich, M. Decomposing 1-Sperner hypergraphs

The Electronic Journal of Combinatorics 26(3) (2019), #P3.18.
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Consequences
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The construction for 1-Sperner hypergraphs has several consequences:

1. An alternative proof of the fact that

every 1-Sperner Boolean function is threshold.

x w(x)
1 2
2 1
3 1
4 1

∅

{1} {2} {3} {4}

{1, 2, 3, 4}

{2,3,4}
{1, 2, 4}

{1,2} {1,3} {2, 3}

{1, 3, 4}{1, 2, 3}

{2, 4} {3, 4}

t = 3

{1,4}

w =

 2
1
1
1



The proof is constructive and builds the corresponding weights and

threshold.
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2. A proof of the fact that every 1-Sperner hypergraph is equilizable.

∅

{1, 2, 3, 4}

{1,2}

{1, 2, 4} {1, 3, 4}
{1, 2, 3}

{2,3,4}

{1,3} {1,4} {2, 3} {2, 4} {3, 4}

{1} {2} {3} {4}

x w(x)
1 2
2 1
3 1
4 1

t = 3

Equilizable hypergraphs can be seen as a generalization of equistable

graphs (introduced in 1980 by Payan and studied afterwards in many

papers).
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3. An upper bound on the size of 1-Sperner hypergraphs.

Proposition

For every 1-Sperner hypergraph H = (V ,E) with E ̸= {∅}, we have

|E | ≤ |V |.

• Proof idea: we show that the characteristic vectors of the hyperedges are

linearly independent over the reals.
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4. A lower bound on the size of certain 1-Sperner hypergraphs.

Proposition

For every 1-Sperner hypergraph H = (V ,E) with |V | ≥ 2 and without

universal, isolated, and twin vertices, we have

|E | ≥
⌈
|V |+ 2

2

⌉
.

This bound is sharp.
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Given a hypergraph H = (V ,E), a transversal of H is a set of vertices

intersecting all hyperedges of H.

The transversal hypergraph HT is the hypergraph with vertex set V in which

a set S ⊆ V is a hyperedge if and only if S is an inclusion-minimal transversal

of H.
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5. An efficient algorithm for computing the transversal hypergraph of a given

1-Sperner hypergraph.

Theorem

The number of minimal transversals of every 1-Sperner hypergraph

H = (V ,E) is at most

max

{
1, |V |,

(
|V |
2

)}
.

This bound is sharp.

Moreover, the transversal hypergraph HT of a given 1-Sperner hypergraph

H = (V ,E) can be computed in time O(|V |3|E |).
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Applications to graphs: new classes of bounded clique-width
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The construction of 1-Sperner hypergraphs leads to

new classes of bipartite, cobipartite, and split graphs of bounded clique-width.
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clique-width of a graph G = (V ,E) = smallest number of labels in a

k-expression constructing (a graph isomorphic to) G

A k-expression is an algebraic expression building a graph together with labels

ℓ(v) ∈ {1, . . . , k} for all v ∈ V ,

using the following operations:

• ℓv , ℓ ∈ {1, . . . , k}: creating a new one-vertex graph with vertex v

labeled ℓ,

• G ⊕ H: disjoint union

• ηi,j(G) for i , j ∈ {1, . . . , k}, i ̸= j : add edges

• ρi→j(G) for i , j ∈ {1, . . . , k}, i ̸= j : relabel

31



Example:

The following expression builds a complete graph minus an edge using only

labels 1 and 2 (yellow and blue, respectively):

η1,2 (ρ2→1 (η1,2 (1(a)⊕ 2(b)))⊕ (2(c)⊕ 2(d)))

1(a) 2(b)

⊕

η1,2

ρ2→1

⊕

η1,2

ba

ba

ba

a b

ba

ba

d

2(c) 2(d)

⊕

dc

c d

c

dc
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Many algorithmic decision or optimization problems on graphs that are NP-hard

for general graphs can be solved in polynomial time on graph classes of

bounded clique-width (often in linear time if a k-expression is known).

In particular, there is a metatheorem of Courcelle, Makowsky, and Rotics

(2000).
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We illustrate the idea on the class of split graphs (introduced by Földes and

Hammer in 1977).

A graph is split if has a split partition, that is, a partition (C , I ) of the vertex

set into a clique and an independent set.

clique

independent set
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The clique-width of split graphs is known to be unbounded.

It remains unbounded even for H-free split graphs, as shown by Brandstädt,

Dabrowski, Huang, Paulusma (in 2016).

H
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We show that the construction of 1-Sperner hypergraphs leads to

a 5-expression of a given H-free split graph G with a split partition (C , I )

provided that

the neighborhoods in I of vertices in C are pairwise incomparable.
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Idea of the transformation
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Given a split graph G with a split partition (C , I ), define a hypergraph

H = (V ,E) with V = I and E = {N(v) ∩ I : v ∈ C}.

I

C

u1

u2

u3

u4

u5

u6

u7

u8

AH =


1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 0 1
0 1 1 1 1 0 1 1


u1 u2 u3 u4 u5 u6 u7 u8

v1
v2
v3
v4
v5

v1

v2

v3

v4

v5

G

Since the neighborhoods in I of vertices in C are pairwise incomparable, H is

Sperner.

Since G is H-free, H is also 1-Sperner.
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We decompose ...

I

C

incidence matrix of hypergraph H = H1 �H2

AH2 =

 1 1 1 0
1 1 0 1
1 0 1 1

AH1 =

(
1 0 0
0 1 0

)u2 u3 u4
v1
v2

u5 u6 u7 u8

v3
v4
v5

u1

u2

u3

u4

u5

u6

u7

u8

AH =


1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 0 1
0 1 1 1 1 0 1 1


u1 u2 u3 u4 u5 u6 u7 u8

v1
v2
v3
v4
v5

v1

v2

v3

v4

v5

z

z
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... and use induction!

u1

u2

u3

u4

u5

u6

u7

u8

v1

v2

v3

v4

v5

z

1, 2, 3 4, 5

1, 2, 3

4, 5

2 4

3

5

⊕

z1
⊕

2 4

3

5

z1

=first relabel

then take ⊕

add missing
edges
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This result leads to efficient algorithms for three basic variants of the

dominating set problem in the class of H-free split graphs.

Given a graph G = (V ,E), a set S ⊆ V is:

• a dominating set if every vertex in V \ S has a neighbor in S ,

• a total dominating set if every vertex has a neighbor in S ,

• a connected dominating set if it is a dominating set that induces a

connected subgraph of G .
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Theorem

The problems of finding a minimum dominating set / total dominating set /

connected dominating set

are solvable in time O(|V (G)|3) in the class of H-free split graphs.

This result is sharp in the sense that all three problems are known to be

NP-hard:

• in the class of split graphs,

• in the class of H-free graphs.
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Thank you!

Questions?
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