Background	New Concepts		Algorithmic Results	Keys
00	0000	0000	000	000

Hypergraph Horn Functions

Endre Boros*

MSIS Department and RUTCOR, Rutgers University

Boolean Meeting, Liblice, September 24-28. 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

 $^{^*}$ Based on joint work with K. Bérczi and K. Makino

Set of Variables: V, |V| = n > 1. Set of Literals: $\mathbb{L} = \{v, \bar{v} = 1 - v \mid v \in V$ Boolean Functions: $f : 2^V \mapsto \{0, 1\}$. Thus Sets: $\mathcal{T}(f) = \{S \in V \mid f(S) = 1\}$

Clauses: A *clause* is a disjunction of literals:

 $\overline{1} \lor 2 \lor 3 \lor \overline{4}.$

CNFs: A *CNF* is a conjunction of clauses.

Implicates: A clause C is an *implicate* of a Boolean function f if it evaluates to true whenever f does:

 $f \leq C.$

・ロト ・ 四ト ・ 日ト ・ 日

 $\overline{1} \lor 2 \lor 3 \lor \overline{4}.$

CNFs: A *CNF* is a conjunction of clauses.

Implicates: A clause C is an *implicate* of a Boolean function f if it evaluates to true whenever f does:

 $f \leq C.$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Background New Concepts Basic Properties Algorithmic Results 000 000 000 000 000 000 000 000

Set of Variables: V, |V| = n > 1. Set of Literals: $\mathbb{L} = \{v, \overline{v} = 1 - v \mid v \in V\}$. Boolean Functions: $f : 2^V \mapsto \{0, 1\}$. True Sets: $\mathcal{T}(f) = \{S \subseteq V \mid f(S) = 1\}$. Clauses: A *clause* is a disjunction of literals:

 $\overline{1} \lor 2 \lor 3 \lor \overline{4}.$

CNFs: A *CNF* is a conjunction of clauses.

Implicates: A clause C is an *implicate* of a Boolean function f if it evaluates to true whenever f does:

 $f \leq C.$

Set of Variables: V, |V| = n > 1.Set of Literals: $\mathbb{L} = \{v, \overline{v} = 1 - v \mid v \in V\}.$ Boolean Functions: $f : 2^V \mapsto \{0, 1\}.$ True Sets: $\mathcal{T}(f) = \{S \subseteq V \mid f(S) = 1\}.$

 $\overline{1} \lor 2 \lor 3 \lor \overline{4}.$

CNFs: A *CNF* is a conjunction of clauses.

Implicates: A clause C is an *implicate* of a Boolean function f if it evaluates to true whenever f does:

 $f \leq C.$

 $\bar{1}\vee 2\vee 3\vee \bar{4}.$

CNFs: A *CNF* is a conjunction of clauses.

Implicates: A clause C is an *implicate* of a Boolean function f if it evaluates to true whenever f does:

 $f \leq C.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\bar{1} \lor 2 \lor 3 \lor \bar{4}.$

CNFs: A *CNF* is a conjunction of clauses.

Implicates: A clause C is an *implicate* of a Boolean function f if it evaluates to true whenever f does:

 $f \leq C.$

 $\overline{1} \lor 2 \lor 3 \lor \overline{4}.$

CNFs: A *CNF* is a conjunction of clauses.

Implicates: A clause C is an *implicate* of a Boolean function f if it evaluates to true whenever f does:

$$f \leq C.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definite (pure) Horn clause: Has exactly one unnegated literal: for $v \in V, B \subseteq V$

$$\left(v \lor \bigvee_{u \in B} \bar{u} \right) \quad \iff \quad B \to v$$

Definite Horn Function h: Can be represented by a CNF in which every clause is definite Horn $\iff \mathcal{T}(h)$ is closed under intersections and $V \in \mathcal{T}(h)$ (Horn, 1951).

Implicates of a definite Horn function h:

$$h \leq B \xrightarrow{h} v$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

for some $B \subseteq V$ and $v \in V$.

Definite (pure) Horn clause: Has exactly one unnegated literal: for $v \in V, \, B \subseteq V$

$$\left(v \vee \bigvee_{u \in B} \bar{u} \right) \quad \iff \quad B \to v$$

Definite Horn Function h: Can be represented by a CNF in which every clause is definite Horn $\iff \mathcal{T}(h)$ is closed under intersections and $V \in \mathcal{T}(h)$ (Horn, 1951).

Implicates of a definite Horn function h:

$$h \leq B \xrightarrow{h} v$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for some $B \subseteq V$ and $v \in V$.

Definite (pure) Horn clause: Has exactly one unnegated literal: for $v \in V, B \subseteq V$

$$\left(v \vee \bigvee_{u \in B} \bar{u} \right) \quad \iff \quad B \to v$$

Definite Horn Function h: Can be represented by a CNF in which every clause is definite Horn $\iff \mathcal{T}(h)$ is closed under intersections and $V \in \mathcal{T}(h)$ (Horn, 1951).

Implicates of a definite Horn function h:

$$h \leq B \xrightarrow{h} v$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for some $B \subseteq V$ and $v \in V$.

$$I - v \xrightarrow{f} v \quad \forall v \in I.$$

Equivalence: If $I \subseteq V$, |I| = 2 is an implicate set, then we have equivalent variables.

A (healthy) redundancy in databases: ...

Given $f: 2^V \mapsto \{0, 1\}$ we denote by $\mathcal{I}(f)$ the family of its implicate sets.

Note: couply: $A \in \mathcal{I}(f)$: Closed under union: $\mathcal{I}(f) = \mathcal{I}(f)^{\vee}$. We call a closes $A \rightarrow \pi$ a circular implicate of f if $A \rightarrow \pi \in \mathcal{I}(f)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$I - v \xrightarrow{f} v \quad \forall v \in I.$$

Equivalence: If $I \subseteq V$, |I| = 2 is an implicate set, then we have equivalent variables.

A (healthy) redundancy in databases: ...

Given $f: 2^V \mapsto \{0, 1\}$ we denote by $\mathcal{I}(f)$ the family of its implicate sets.

Note: complete $\emptyset \in \mathcal{I}(f)$: Closed and cramine $\mathcal{I}(f) := \mathcal{I}(f)^{\mathbb{N}}$. We call a chance $\mathcal{A} \to v$ a consultar implicate of f if $\mathcal{A} \to v \in \mathcal{I}(f)$.

$$I - v \xrightarrow{f} v \quad \forall v \in I.$$

Equivalence: If $I \subseteq V$, |I| = 2 is an implicate set, then we have equivalent variables.

A (healthy) redundancy in databases: ...

Given $f: 2^V \mapsto \{0, 1\}$ we denote by $\mathcal{I}(f)$ the family of its implicate sets.

Never empty: $\emptyset \in \mathcal{I}(f)$. Glosed under amon: $\mathcal{I}(f) := \mathcal{I}(f)^{\vee}$. We call a clause $A \to n$ a circular implicate of f if $A \not = v \in \mathcal{I}(f)$.

$$I - v \xrightarrow{f} v \quad \forall v \in I.$$

Equivalence: If $I \subseteq V$, |I| = 2 is an implicate set, then we have equivalent variables.

A (healthy) redundancy in databases: ...

Given $f: 2^V \mapsto \{0, 1\}$ we denote by $\mathcal{I}(f)$ the family of its implicate sets.

Never empty: $\emptyset \in \mathcal{I}(f)$. Closed under union: $\mathcal{I}(f) = \mathcal{I}(f)^{\cup}$. We call a clause $A \to v$ a *circular implicate* of f if $A + v \in \mathcal{I}(f)$.

$$I - v \xrightarrow{f} v \quad \forall v \in I.$$

Equivalence: If $I \subseteq V$, |I| = 2 is an implicate set, then we have equivalent variables.

A (healthy) redundancy in databases: ...

Given $f: 2^V \mapsto \{0, 1\}$ we denote by $\mathcal{I}(f)$ the family of its implicate sets.

Never empty: $\emptyset \in \mathcal{I}(f)$. Closed under union: $\mathcal{I}(f) = \mathcal{I}(f)^{\cup}$. We call a clause $A \to v$ a *circular implicate* of f if $A + v \in \mathcal{I}(f)$.

$$I - v \xrightarrow{f} v \quad \forall v \in I.$$

Equivalence: If $I \subseteq V$, |I| = 2 is an implicate set, then we have equivalent variables.

A (healthy) redundancy in databases: ...

Given $f: 2^V \mapsto \{0, 1\}$ we denote by $\mathcal{I}(f)$ the family of its implicate sets.

Never empty: $\emptyset \in \mathcal{I}(f)$. Closed under union: $\mathcal{I}(f) = \mathcal{I}(f)^{\cup}$. We call a clause $A \to v$ a *circular implicate* of f if $A + v \in \mathcal{I}(f)$.

$$I - v \xrightarrow{f} v \quad \forall v \in I.$$

Equivalence: If $I \subseteq V$, |I| = 2 is an implicate set, then we have equivalent variables.

A (healthy) redundancy in databases: ...

Given $f: 2^V \mapsto \{0, 1\}$ we denote by $\mathcal{I}(f)$ the family of its implicate sets.

Never empty: $\emptyset \in \mathcal{I}(f)$. Closed under union: $\mathcal{I}(f) = \mathcal{I}(f)^{\cup}$. We call a clause $A \to v$ a *circular implicate* of f if $A + v \in \mathcal{I}(f)$.

うしん 同一人間を入所する (四) ふしゃ

Background New Concepts Basic Properties Algorithmic Results Keys 00 000 000 000 000 000 000 000 000

Given a hypergraph $\mathcal{H} \subseteq 2^V$ we associate to it a definite Horn CNF

$$\Phi_{\mathcal{H}} = \bigwedge_{H \in \mathcal{H}} \left(\bigwedge_{v \in H} \left((H - v) \to v \right) \right).$$

A Boolean function $f: 2^V \mapsto \{0, 1\}$ is called *hypergraph Horn* if there exists a hypergraph $\mathcal{H} \subseteq 2^V$ such that

 $f \sim \Phi_{\mathcal{H}}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\implies \mathcal{H} \subseteq \mathcal{I}(f).$

Background New Concepts Basic Properties Algorithmic Results Keys 00 000 000 000 000 000 000 000 000

Given a hypergraph $\mathcal{H} \subseteq 2^V$ we associate to it a definite Horn CNF

$$\Phi_{\mathcal{H}} = \bigwedge_{H \in \mathcal{H}} \left(\bigwedge_{v \in H} \left((H - v) \to v \right) \right).$$

A Boolean function $f: 2^V \mapsto \{0, 1\}$ is called *hypergraph Horn* if there exists a hypergraph $\mathcal{H} \subseteq 2^V$ such that

$$f \sim \Phi_{\mathcal{H}}.$$

ション ふゆ さい シャリン しょうくしゃ

$$\implies \mathcal{H} \subseteq \mathcal{I}(f).$$

Background New Concepts Basic Properties Algorithmic Results Keys 00 000 000 000 000 000 000 000 000

Given a hypergraph $\mathcal{H}\subseteq 2^V$ we associate to it a definite Horn CNF

$$\Phi_{\mathcal{H}} = \bigwedge_{H \in \mathcal{H}} \left(\bigwedge_{v \in H} \left((H - v) \to v \right) \right).$$

A Boolean function $f: 2^V \mapsto \{0, 1\}$ is called *hypergraph Horn* if there exists a hypergraph $\mathcal{H} \subseteq 2^V$ such that

$$f \sim \Phi_{\mathcal{H}}.$$

ション ふゆ さい シャリン しょうくしゃ

$$\implies \mathcal{H} \subseteq \mathcal{I}(f).$$

Background	New Concepts	Algorithmic Results	
	0000		

Given a Boolean function $f: 2^V \mapsto \{0, 1\}$ we define its *implicate dual* f^i by

$$\mathcal{T}(f^i) = (\mathcal{I}(f))^c = \{V \setminus I \mid I \in \mathcal{I}(f)\}$$

Recall that $\mathcal{I}(f)$ is union closed and $\emptyset \in \mathcal{I}(f)$. Consequently, $\mathcal{I}(f)^c$ is intersection closed and $V \in \mathcal{I}(f)^c$.

The implicate dual of an arbitrary Boolean function is definite Horn.

Background	New Concepts	Algorithmic Results	
	0000		

Given a Boolean function $f: 2^V \mapsto \{0, 1\}$ we define its *implicate dual* f^i by

$$\mathcal{T}(f^i) = (\mathcal{I}(f))^c = \{V \setminus I \mid I \in \mathcal{I}(f)\}$$

Recall that $\mathcal{I}(f)$ is union closed and $\emptyset \in \mathcal{I}(f)$. Consequently, $\mathcal{I}(f)^c$ is intersection closed and $V \in \mathcal{I}(f)^c$.

Claim

The implicate dual of an arbitrary Boolean function is definite Horn.

Background	New Concepts	Algorithmic Results	
	0000		

Given a Boolean function $f:2^V\mapsto\{0,1\}$ we define its implicate dual f^i by

$$\mathcal{T}(f^i) = (\mathcal{I}(f))^c = \{V \setminus I \mid I \in \mathcal{I}(f)\}$$

Recall that $\mathcal{I}(f)$ is union closed and $\emptyset \in \mathcal{I}(f)$. Consequently, $\mathcal{I}(f)^c$ is intersection closed and $V \in \mathcal{I}(f)^c$.

Claim

The implicate dual of an arbitrary Boolean function is definite Horn.

ション ふゆ さい シャリン しょうくしゃ

How can we recognize if a given Horn CNF Ψ represents a hypergraph Horn function?

Which hypergraphs are families of implicate sets of *Horn* functions?
Which definite Horn functions are implicate duals of Boolean functions?

Background 00	New Concepts	Basic Properties 0000	Algorithmic Results 000	Keys 000		
Some N	Some Natural Questions					
	n we recognize if a bergraph Horn fund	a given <i>Horn</i> CNF v ction?	Ψ represents a			
Which I	hypergraphs are fa	amilies of implicate	sets of <i>Horn</i> functions	5?		

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のへの

Background 00	New Concepts 000●	Basic Properties 0000	Algorithmic Results	Keys 000
Some N	Vatural Que	stions		
	n we recognize if a pergraph Horn fund	a given <i>Horn</i> CNF v ction?	Ψ represents a	
Which	hypergraphs are fa	amilies of implicate	sets of <i>Horn</i> functions	?
Which	definite Horn funct	tions are implicate	duals of Boolean	

(ロ)、

functions?

 Background
 New Concepts
 Basic Properties
 Algorithmic Results
 Keys

 OO
 OOO
 OOO
 OOO
 OOO
 OOO
 OOO

 Some Natural Questions
 How can we recognize if a given Horn CNF Ψ represents a hypergraph Horn function?
 Which hypergraphs are families of implicate sets of Horn functions?
 Which definite Horn functions are implicate duals of Boolean

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

functions?

Background	New Concepts	Basic Properties	Algorithmic Results	Keys
00	0000	●000	000	000
Some ex	xamples			

Hypergraph Horn functions may have non-circular implicates: For instance, if $\mathcal{H} = \{123, 234\}$, then

 $12 \xrightarrow{\Phi_{\mathcal{H}}} 4$ but $14 \xrightarrow{\Phi_{\mathcal{H}}} 2$

A hypergraph Horn function may be represented by different hypergraphs:

 $\Phi_{12,23,34} \sim \Phi_{13,14,24}$

The same example also shows taking unions of a representation does not yield all implicate sets, in general. In particular, not all union closed families can appear as $\mathcal{I}(h)$ of a definite Horn function h.

Hypergraph Horn functions may have non-circular implicates: For instance, if $\mathcal{H} = \{123, 234\}$, then

 $12 \stackrel{\Phi_{\mathcal{H}}}{\rightarrow} 4 \quad \text{but} \quad 14 \stackrel{\Phi_{\mathcal{H}}}{\rightarrow} 2$

A hypergraph Horn function may be represented by different hypergraphs:

 $\Phi_{12,23,34} ~\sim~ \Phi_{13,14,24}$

The same example also shows taking unions of a representation does not yield all implicate sets, in general. In particular, not all union closed families can appear as $\mathcal{I}(h)$ of a definite Horn function h.

Hypergraph Horn functions may have non-circular implicates: For instance, if $\mathcal{H} = \{123, 234\}$, then

 $12 \stackrel{\Phi_{\mathcal{H}}}{\rightarrow} 4 \quad \text{but} \quad 14 \stackrel{\Phi_{\mathcal{H}}}{\rightarrow} 2$

A hypergraph Horn function may be represented by different hypergraphs:

 $\Phi_{12,23,34} \sim \Phi_{13,14,24}$

The same example also shows taking unions of a representation does not yield all implicate sets, in general. In particular, not all union closed families can appear as $\mathcal{I}(h)$ of a definite Horn function h.

Background		Basic Properties	Algorithmic Results	
		0000		
Operato	ors			

- We denote by $\mathbb{T}_h(S) = \mathbb{T}_{\Psi}(S)$ the unique minimal true set $T \in \mathcal{T}(h)$ such that $S \subseteq T$.
- We denote by $\mathbb{I}_h(S) = \mathbb{I}_{\Psi}(S)$ the unique maximal implicate set $I \in \mathcal{I}(h)$ such that $I \subseteq S$.
- $\mathbb{T}_h(S)$ is known as the *forward-chaining* closure of S. It can be computed in polynomial time in the size of Ψ .
- We call $\mathbb{I}_h(S)$ the *h*-core of S. It can be also computed in polynomial time in the size of Ψ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Background		Basic Properties	Algorithmic Results	
00	0000	0000	000	000
Operato	ors			

- We denote by $\mathbb{T}_h(S) = \mathbb{T}_{\Psi}(S)$ the unique minimal true set $T \in \mathcal{T}(h)$ such that $S \subseteq T$.
- We denote by $\mathbb{I}_h(S) = \mathbb{I}_{\Psi}(S)$ the unique maximal implicate set $I \in \mathcal{I}(h)$ such that $I \subseteq S$.

 $\mathbb{T}_h(S)$ is known as the *forward-chaining* closure of S. It can be computed in polynomial time in the size of Ψ .

We call $\mathbb{I}_h(S)$ the *h*-core of *S*. It can be also computed in polynomial time in the size of Ψ .

Background		Basic Properties	Algorithmic Results	
00	0000	0000	000	000
Operato	ors			

- We denote by $\mathbb{T}_h(S) = \mathbb{T}_{\Psi}(S)$ the unique minimal true set $T \in \mathcal{T}(h)$ such that $S \subseteq T$.
- We denote by $\mathbb{I}_h(S) = \mathbb{I}_{\Psi}(S)$ the unique maximal implicate set $I \in \mathcal{I}(h)$ such that $I \subseteq S$.
- $\mathbb{T}_h(S)$ is known as the *forward-chaining* closure of S. It can be computed in polynomial time in the size of Ψ .
- We call $\mathbb{I}_h(S)$ the *h*-core of *S*. It can be also computed in polynomial time in the size of Ψ .

Background		Basic Properties	Algorithmic Results	
00	0000	0000	000	000
Operato	ors			

- We denote by $\mathbb{T}_h(S) = \mathbb{T}_{\Psi}(S)$ the unique minimal true set $T \in \mathcal{T}(h)$ such that $S \subseteq T$.
- We denote by $\mathbb{I}_h(S) = \mathbb{I}_{\Psi}(S)$ the unique maximal implicate set $I \in \mathcal{I}(h)$ such that $I \subseteq S$.
- $\mathbb{T}_h(S)$ is known as the *forward-chaining* closure of S. It can be computed in polynomial time in the size of Ψ .
- We call $\mathbb{I}_h(S)$ the *h*-core of *S*. It can be also computed in polynomial time in the size of Ψ .

Theorem

For a hypergraph Horn function h we have that

$$\mathcal{T}(h) = \{ T \subseteq V \mid \nexists I \in \mathcal{I}(h) \text{ with } |I \setminus T| = 1 \}$$
(1)
$$\mathcal{I}(h) = \{ I \subseteq V \mid \nexists T \in \mathcal{T}(h) \text{ with } |I \setminus T| = 1 \}$$
(2)

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

- (2) holds for all Boolean functions
- (1) turns out to be a characterization of hypergraph Horn functions.

For a hypergraph Horn function h we have that

$$\mathcal{T}(h) = \{ T \subseteq V \mid \nexists I \in \mathcal{I}(h) \text{ with } |I \setminus T| = 1 \}$$
(1)
$$\mathcal{I}(h) = \{ I \subseteq V \mid \nexists T \in \mathcal{T}(h) \text{ with } |I \setminus T| = 1 \}$$
(2)

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

• (2) holds for all Boolean functions.

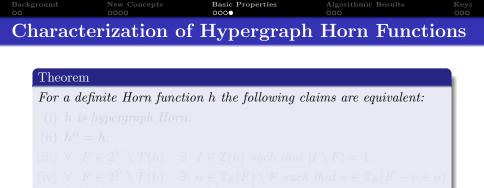
• (1) turns out to be a characterization of hypergraph Horn functions.

For a hypergraph Horn function h we have that

$$\mathcal{T}(h) = \{ T \subseteq V \mid \nexists I \in \mathcal{I}(h) \text{ with } |I \setminus T| = 1 \}$$
(1)
$$\mathcal{I}(h) = \{ I \subseteq V \mid \nexists T \in \mathcal{T}(h) \text{ with } |I \setminus T| = 1 \}$$
(2)

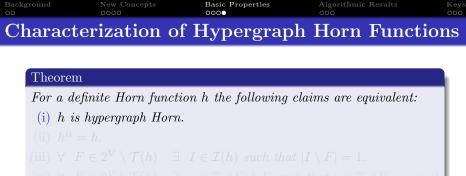
▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

- (2) holds for all Boolean functions.
- (1) turns out to be a characterization of hypergraph Horn functions.



• (ii) shows that implication duality is an involution of the family of hypergraph Horn functions, and it generalizes matroid duality

- (iii) is a reformulation of (1).
- (iv) is a generalization of the Mac Lane Steinitz exchange property of matroid closures.



N) $\forall F \in 2^{\circ} \setminus f(n) \quad \exists u \in \mathbb{I}_h(F) \setminus F \text{ such that } v \in \mathbb{I}_h(F - v + holds \text{ for all } v \in F \text{ with } h(F - v) = 1.$

• (ii) shows that implication duality is an involution of the family of hypergraph Horn functions, and it generalizes matroid duality.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

- (iii) is a reformulation of (1).
- (iv) is a generalization of the Mac Lane Steinitz exchange property of matroid closures.

For a definite Horn function h the following claims are equivalent:

- (i) h is hypergraph Horn.
- (ii) $h^{ii} = h$.
- (iii) $\forall F \in 2^V \setminus \mathcal{T}(h) \quad \exists I \in \mathcal{I}(h) \text{ such that } |I \setminus F| = 1.$

(iv) $\forall F \in 2^V \setminus \mathcal{T}(h) \quad \exists u \in \mathbb{T}_h(F) \setminus F \text{ such that } v \in \mathbb{T}_h(F - v + u)$ holds for all $v \in F$ with h(F - v) = 1.

• (ii) shows that implication duality is an involution of the family of hypergraph Horn functions, and it generalizes matroid duality.

- (iii) is a reformulation of (1).
- (iv) is a generalization of the Mac Lane Steinitz exchange property of matroid closures.

For a definite Horn function h the following claims are equivalent:

(i) h is hypergraph Horn.

(ii) $h^{ii} = h$.

(iii) $\forall F \in 2^V \setminus \mathcal{T}(h) \quad \exists I \in \mathcal{I}(h) \text{ such that } |I \setminus F| = 1.$

(iv) $\forall F \in 2^V \setminus \mathcal{T}(h) \quad \exists u \in \mathbb{T}_h(F) \setminus F \text{ such that } v \in \mathbb{T}_h(F - v + u)$ holds for all $v \in F$ with h(F - v) = 1.

• (ii) shows that implication duality is an involution of the family of hypergraph Horn functions, and it generalizes matroid duality.

- (iii) is a reformulation of (1).
- (iv) is a generalization of the Mac Lane Steinitz exchange property of matroid closures.

For a definite Horn function h the following claims are equivalent:

- (i) h is hypergraph Horn.
- (ii) $h^{ii} = h$.
- (iii) $\forall F \in 2^V \setminus \mathcal{T}(h) \quad \exists I \in \mathcal{I}(h) \text{ such that } |I \setminus F| = 1.$
- (iv) $\forall F \in 2^V \setminus \mathcal{T}(h) \exists u \in \mathbb{T}_h(F) \setminus F \text{ such that } v \in \mathbb{T}_h(F v + u)$ holds for all $v \in F$ with h(F - v) = 1.
 - (ii) shows that implication duality is an involution of the family of hypergraph Horn functions, and it generalizes matroid duality.

- (iii) is a reformulation of (1).
- (iv) is a generalization of the Mac Lane Steinitz exchange property of matroid closures.

For a definite Horn function h the following claims are equivalent:

- (i) h is hypergraph Horn.
- (ii) $h^{ii} = h$.
- (iii) $\forall F \in 2^V \setminus \mathcal{T}(h) \quad \exists I \in \mathcal{I}(h) \text{ such that } |I \setminus F| = 1.$
- (iv) $\forall F \in 2^V \setminus \mathcal{T}(h) \exists u \in \mathbb{T}_h(F) \setminus F \text{ such that } v \in \mathbb{T}_h(F v + u)$ holds for all $v \in F$ with h(F - v) = 1.
 - (ii) shows that implication duality is an involution of the family of hypergraph Horn functions, and it generalizes matroid duality.

- (iii) is a reformulation of (1).
- (iv) is a generalization of the Mac Lane Steinitz exchange property of matroid closures.

For a definite Horn function h the following claims are equivalent:

- (i) h is hypergraph Horn.
- (ii) $h^{ii} = h$.
- (iii) $\forall F \in 2^V \setminus \mathcal{T}(h) \quad \exists I \in \mathcal{I}(h) \text{ such that } |I \setminus F| = 1.$
- (iv) $\forall F \in 2^V \setminus \mathcal{T}(h) \exists u \in \mathbb{T}_h(F) \setminus F \text{ such that } v \in \mathbb{T}_h(F v + u)$ holds for all $v \in F$ with h(F - v) = 1.
 - (ii) shows that implication duality is an involution of the family of hypergraph Horn functions, and it generalizes matroid duality.

- (iii) is a reformulation of (1).
- (iv) is a generalization of the Mac Lane Steinitz exchange property of matroid closures.

For a definite Horn function h the following claims are equivalent:

- (i) h is hypergraph Horn.
- (ii) $h^{ii} = h$.
- (iii) $\forall F \in 2^V \setminus \mathcal{T}(h) \quad \exists I \in \mathcal{I}(h) \text{ such that } |I \setminus F| = 1.$
- (iv) $\forall F \in 2^V \setminus \mathcal{T}(h) \exists u \in \mathbb{T}_h(F) \setminus F \text{ such that } v \in \mathbb{T}_h(F v + u)$ holds for all $v \in F$ with h(F - v) = 1.
 - (ii) shows that implication duality is an involution of the family of hypergraph Horn functions, and it generalizes matroid duality.

- (iii) is a reformulation of (1).
- (iv) is a generalization of the Mac Lane Steinitz exchange property of matroid closures.

Implicate S	- 4			
Background New 00 000		Basic Properties 0000	Algorithmic Results	Keys 000

Lemma

Given $X, Y \subseteq V$ we can find $I \in \mathcal{I}(h)$ such that $X \subseteq I$, $I \cap Y = \emptyset$, or prove that no such implicate set of h exists in polynomial time in the size of Ψ .

$\operatorname{Corollary}$

- We can generate $\mathcal{I}(h)$ with polynomial delay (in the size of Ψ).
- Given H ⊆ 2^V, we can decide if H = I(h) for a Horn function h, in polynomial time in the size of H.

Implicate S	- 4			
Background New 00 000		Basic Properties 0000	Algorithmic Results	Keys 000

Lemma

Given $X, Y \subseteq V$ we can find $I \in \mathcal{I}(h)$ such that $X \subseteq I$, $I \cap Y = \emptyset$, or prove that no such implicate set of h exists in polynomial time in the size of Ψ .

Corollary

• We can generate $\mathcal{I}(h)$ with polynomial delay (in the size of Ψ).

• Given $\mathcal{H} \subseteq 2^V$, we can decide if $\mathcal{H} = \mathcal{I}(h)$ for a Horn function h, in polynomial time in the size of \mathcal{H} .

Implica	te Sets			
00	0000	0000	●00	000
Background	New Concepts	Basic Properties	Algorithmic Results	Kevs

Lemma

Given $X, Y \subseteq V$ we can find $I \in \mathcal{I}(h)$ such that $X \subseteq I$, $I \cap Y = \emptyset$, or prove that no such implicate set of h exists in polynomial time in the size of Ψ .

Corollary

- We can generate $\mathcal{I}(h)$ with polynomial delay (in the size of Ψ).
- Given $\mathcal{H} \subseteq 2^V$, we can decide if $\mathcal{H} = \mathcal{I}(h)$ for a Horn function h, in polynomial time in the size of \mathcal{H} .

	New Concepts		Algorithmic Results	Keys
00	0000	0000	000	000
Hyperg	ranh Horn	Recognition		

Theorem

We can decide in polynomial time in the size of Ψ if $h \sim \Phi_{\mathcal{H}}$ for a hypergraph $\mathcal{H} \subseteq 2^V$, and if yes, output such a hypergraph with $|\mathcal{H}| \leq |V| \cdot ||\Psi||$.

- The produced hypergraph may not be Sperner ..
- ... even if $h \sim \Phi_{\mathcal{S}}$ for some Sperner hypergraph \mathcal{S} .
- Recognizing the existence of a Sperner hypergraph \mathcal{H} with $\Psi \sim \Phi_{\mathcal{H}}$ is an open problem.

	New Concepts		Algorithmic Results	Keys
00	0000	0000	000	000
Hyperg	ranh Horn	Recognition		

Theorem

We can decide in polynomial time in the size of Ψ if $h \sim \Phi_{\mathcal{H}}$ for a hypergraph $\mathcal{H} \subseteq 2^V$, and if yes, output such a hypergraph with $|\mathcal{H}| \leq |V| \cdot ||\Psi||$.

- The produced hypergraph may not be Sperner ...
- ... even if $h \sim \Phi_{\mathcal{S}}$ for some Sperner hypergraph \mathcal{S} .
- Recognizing the existence of a Sperner hypergraph \mathcal{H} with $\Psi \sim \Phi_{\mathcal{H}}$ is an open problem.

Hypergr	anh Horn	Recognition		
00	0000	0000	000	000
Background	New Concepts	Basic Properties	Algorithmic Results	Keys

Theorem

We can decide in polynomial time in the size of Ψ if $h \sim \Phi_{\mathcal{H}}$ for a hypergraph $\mathcal{H} \subseteq 2^V$, and if yes, output such a hypergraph with $|\mathcal{H}| \leq |V| \cdot ||\Psi||$.

- The produced hypergraph may not be Sperner ...
- ... even if $h \sim \Phi_{\mathcal{S}}$ for some Sperner hypergraph \mathcal{S} .
- Recognizing the existence of a Sperner hypergraph \mathcal{H} with $\Psi \sim \Phi_{\mathcal{H}}$ is an open problem.

Hypergr	anh Horn	Recognition		
00	0000	0000	000	000
Background	New Concepts	Basic Properties	Algorithmic Results	Keys

Theorem

We can decide in polynomial time in the size of Ψ if $h \sim \Phi_{\mathcal{H}}$ for a hypergraph $\mathcal{H} \subseteq 2^V$, and if yes, output such a hypergraph with $|\mathcal{H}| \leq |V| \cdot ||\Psi||$.

- The produced hypergraph may not be Sperner ...
- ... even if $h \sim \Phi_{\mathcal{S}}$ for some Sperner hypergraph \mathcal{S} .
- Recognizing the existence of a Sperner hypergraph \mathcal{H} with $\Psi \sim \Phi_{\mathcal{H}}$ is an open problem.

		Algorithmic Results	
		000	
Implicate	e Duality		

Given definite Horn CNFs Ψ and Γ , we can decide $\Psi \geq \Gamma^i$ in $O(|V|^2 \cdot |\Psi| \cdot ||\Gamma||)$ time.

- Deciding $\Psi \leq \Gamma^i$ is an open problem, even if both CNFs are hypergraph Horn.
- Deciding $\Psi = \Psi^i$ belongs to co-NP.

$\Gamma \mathrm{heorem}$

For a definite Horn function h we have $h = h^i$ if and only if $\mathcal{H} = \mathcal{I}(h)$ is a maximal family with respect to the property of

 $|H \cap H'| \neq 1 \quad \forall \ H, H' \in \mathcal{H}.$

 Note that we have H = H^d if and only if H is a maximal Sperner family with respect to the property of

 $|H \cap H'| \neq 0 \quad \forall \ H, H' \in \mathcal{H}.$

			Algorithmic Results	
00	0000	0000	000	000
Implica	te Duality			
impiica	uc Duanty			

Given definite Horn CNFs Ψ and Γ , we can decide $\Psi \geq \Gamma^i$ in $O(|V|^2 \cdot |\Psi| \cdot ||\Gamma||)$ time.

- Deciding $\Psi \leq \Gamma^i$ is an open problem, even if both CNFs are hypergraph Horn.
- Deciding $\Psi = \Psi^i$ belongs to co-NP.

Theorem

For a definite Horn function h we have $h = h^i$ if and only if $\mathcal{H} = \mathcal{I}(h)$ is a maximal family with respect to the property of

 $|H \cap H'| \neq 1 \quad \forall \ H, H' \in \mathcal{H}.$

Note that we have \$\mathcal{H} = \$\mathcal{H}^d\$ if and only if \$\mathcal{H}\$ is a maximal Sperner family with respect to the property of

 $|H \cap H'| \neq 0 \quad \forall \ H, H' \in \mathcal{H}.$

			Algorithmic Results	
00	0000	0000	000	000
Implica	te Duality			
impiica	uc Duanty			

Given definite Horn CNFs Ψ and Γ , we can decide $\Psi \geq \Gamma^i$ in $O(|V|^2 \cdot |\Psi| \cdot ||\Gamma||)$ time.

- Deciding $\Psi \leq \Gamma^i$ is an open problem, even if both CNFs are hypergraph Horn.
- Deciding $\Psi = \Psi^i$ belongs to co-NP.

Theorem

For a definite Horn function h we have $h = h^i$ if and only if $\mathcal{H} = \mathcal{I}(h)$ is a maximal family with respect to the property of

 $|H \cap H'| \neq 1 \quad \forall \ H, H' \in \mathcal{H}.$

• Note that we have $\mathcal{H} = \mathcal{H}^d$ if and only if \mathcal{H} is a maximal **Sperner** family with respect to the property of

 $|H \cap H'| \neq 0 \quad \forall \ H, H' \in \mathcal{H}.$

			Algorithmic Results	
00	0000	0000	000	000
Implica	te Duality			
impiica	uc Duanty			

Given definite Horn CNFs Ψ and Γ , we can decide $\Psi \geq \Gamma^i$ in $O(|V|^2 \cdot |\Psi| \cdot ||\Gamma||)$ time.

- Deciding $\Psi \leq \Gamma^i$ is an open problem, even if both CNFs are hypergraph Horn.
- Deciding $\Psi = \Psi^i$ belongs to co-NP.

Theorem

For a definite Horn function h we have $h = h^i$ if and only if $\mathcal{H} = \mathcal{I}(h)$ is a maximal family with respect to the property of

 $|H \cap H'| \neq \mathbf{1} \quad \forall \ H, H' \in \mathcal{H}.$

• Note that we have $\mathcal{H} = \mathcal{H}^d$ if and only if \mathcal{H} is a maximal **Sperner** family with respect to the property of

 $|H \cap H'| \neq 0 \quad \forall \ H, H' \in \mathcal{H}.$

Background 00	New Concepts	Basic Properties	Algorithmic Results 00●	Keys 000
		0000		000
Implicate	e Duality			

Given definite Horn CNFs Ψ and Γ , we can decide $\Psi \geq \Gamma^i$ in $O(|V|^2 \cdot |\Psi| \cdot ||\Gamma||)$ time.

- Deciding $\Psi \leq \Gamma^i$ is an open problem, even if both CNFs are hypergraph Horn.
- Deciding $\Psi = \Psi^i$ belongs to co-NP.

Theorem

For a definite Horn function h we have $h = h^i$ if and only if $\mathcal{H} = \mathcal{I}(h)$ is a maximal family with respect to the property of

 $|H \cap H'| \neq \mathbf{1} \quad \forall \ H, H' \in \mathcal{H}.$

• Note that we have $\mathcal{H} = \mathcal{H}^d$ if and only if \mathcal{H} is a maximal **Sperner** family with respect to the property of

 $|H \cap H'| \neq \mathbf{0} \quad \forall \ H, H' \in \mathcal{H}.$

(日) (日) (日) (日) (日) (日) (日)

Background New Concepts Basic Properties Algorithmic Results Keys 00 000 000 000 000

A subset $K \subseteq V$ is a key of a definite Horn function h if $\mathbb{T}_h(K) = V$. We denote by $\mathcal{K}(h)$ the family of minimal keys of h. Note that we have $\mathcal{M}(h) = \mathcal{K}(h)^{dc}$, where $\mathcal{M}(h)$ denotes the family of maximal non-trivial true sets of h.

Claim

Given a Sperner hypergraph $\mathcal{K} \subseteq 2^V$, we have $\mathcal{K} = \mathcal{K}(h)$ for a definite Horn function h if and only if (i) $\mathcal{K}^{dc} \subseteq \mathcal{T}(h)$, and (ii) $\mathcal{K}^+ \setminus \{V\} \subseteq 2^V \setminus \mathcal{T}(h)$.

Let us call a subset $I \subseteq V$ a *potential implicate set* for \mathcal{K} if $\mathcal{K}^{dc} \subseteq \mathcal{T}(\Phi_{\{I\}})$. We denote by $\mathcal{P}(\mathcal{K})$ the family of potential implicate sets for \mathcal{K} .

イロト 不得下 イヨト イヨト

ъ

Claim

If $\mathcal{K} = \mathcal{K}(h)$ for a definite Horn function h, then $\mathcal{I}(h) \subseteq \mathcal{P}(\mathcal{K})$

Background New Concepts Basic Properties Algorithmic Results Keys 00 000 000 000 000

A subset $K \subseteq V$ is a key of a definite Horn function h if $\mathbb{T}_h(K) = V$. We denote by $\mathcal{K}(h)$ the family of minimal keys of h. Note that we have $\mathcal{M}(h) = \mathcal{K}(h)^{dc}$, where $\mathcal{M}(h)$ denotes the family of maximal non-trivial true sets of h.

Claim

Given a Sperner hypergraph $\mathcal{K} \subseteq 2^V$, we have $\mathcal{K} = \mathcal{K}(h)$ for a definite Horn function h if and only if (i) $\mathcal{K}^{dc} \subseteq \mathcal{T}(h)$, and (ii) $\mathcal{K}^+ \setminus \{V\} \subseteq 2^V \setminus \mathcal{T}(h)$.

Let us call a subset $I \subseteq V$ a *potential implicate set* for \mathcal{K} if $\mathcal{K}^{dc} \subseteq \mathcal{T}(\Phi_{\{I\}})$. We denote by $\mathcal{P}(\mathcal{K})$ the family of potential implicate sets for \mathcal{K} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Claim

If $\mathcal{K} = \mathcal{K}(h)$ for a definite Horn function h, then $\mathcal{I}(h) \subseteq \mathcal{P}(\mathcal{K})$

Background New Concepts Basic Properties Algorithmic Results 000 000 000 000 000 000 000 000

A subset $K \subseteq V$ is a key of a definite Horn function h if $\mathbb{T}_h(K) = V$. We denote by $\mathcal{K}(h)$ the family of minimal keys of h. Note that we have $\mathcal{M}(h) = \mathcal{K}(h)^{dc}$, where $\mathcal{M}(h)$ denotes the family of maximal non-trivial true sets of h.

Claim

Given a Sperner hypergraph $\mathcal{K} \subseteq 2^V$, we have $\mathcal{K} = \mathcal{K}(h)$ for a definite Horn function h if and only if

(i) $\mathcal{K}^{dc} \subseteq \mathcal{T}(h)$, and (ii) $\mathcal{K}^+ \setminus \{V\} \subseteq 2^V \setminus \mathcal{T}(h)$.

Let us call a subset $I \subseteq V$ a *potential implicate set* for \mathcal{K} if $\mathcal{K}^{dc} \subseteq \mathcal{T}(\Phi_{\{I\}})$. We denote by $\mathcal{P}(\mathcal{K})$ the family of potential implicate sets for \mathcal{K} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Claim

If $\mathcal{K} = \mathcal{K}(h)$ for a definite Horn function h, then $\mathcal{I}(h) \subseteq \mathcal{P}(\mathcal{K})$

Background New Concepts Basic Properties Algorithmic Results Keys 00 000 000 000 000

A subset $K \subseteq V$ is a key of a definite Horn function h if $\mathbb{T}_h(K) = V$. We denote by $\mathcal{K}(h)$ the family of minimal keys of h. Note that we have $\mathcal{M}(h) = \mathcal{K}(h)^{dc}$, where $\mathcal{M}(h)$ denotes the family of maximal non-trivial true sets of h.

Claim

Given a Sperner hypergraph $\mathcal{K} \subseteq 2^V$, we have $\mathcal{K} = \mathcal{K}(h)$ for a definite Horn function h if and only if

(i) $\mathcal{K}^{dc} \subseteq \mathcal{T}(h)$, and (ii) $\mathcal{K}^+ \setminus \{V\} \subseteq 2^V \setminus \mathcal{T}(h)$.

Let us call a subset $I \subseteq V$ a *potential implicate set* for \mathcal{K} if $\mathcal{K}^{dc} \subseteq \mathcal{T}(\Phi_{\{I\}})$. We denote by $\mathcal{P}(\mathcal{K})$ the family of potential implicate sets for \mathcal{K} .

Claim

If $\mathcal{K} = \mathcal{K}(h)$ for a definite Horn function h, then $\mathcal{I}(h) \subseteq \mathcal{P}(\mathcal{K})$.

Vous of Definite Horn Functions						
00	0000	0000	000	000		
			Algorithmic Results	Keys		

Keys of Definite Horn Functions

Theorem

A Sperner hypergraph $\mathcal{K} \subseteq 2^V$ is realized as the set of minimal keys of a definite Horn function if and only if $\mathcal{K} = \mathcal{K}(\Phi_{\mathcal{P}(\mathcal{K})})$. Furthermore, if $\mathcal{K} = \mathcal{K}(h)$ for a definite Horn function h then we have $h \ge \Phi_{\mathcal{P}(\mathcal{K})}$.

Note that $\emptyset \in \mathcal{P}(\mathcal{K})$ and that $\mathcal{P}(\mathcal{K})$ is union closed, by the definition of potential implicate sets. Thus, for any subset $S \subseteq V$ we have a unique maximal potential implicate set in S.

Lemma

For a Sperner hypergraph $\mathcal{K} \subseteq 2^V$ and subset $S \subseteq V$ the unique maximal potential implicate set within S can be computed in $O(|S| \cdot ||\mathcal{K}||^2)$ time.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Varia of Definite Hanne Franctions					
00	0000	0000	000	000	
			Algorithmic Results	Keys	

Keys of Definite Horn Functions

Theorem

A Sperner hypergraph $\mathcal{K} \subseteq 2^V$ is realized as the set of minimal keys of a definite Horn function if and only if $\mathcal{K} = \mathcal{K}(\Phi_{\mathcal{P}(\mathcal{K})})$. Furthermore, if $\mathcal{K} = \mathcal{K}(h)$ for a definite Horn function h then we have $h \ge \Phi_{\mathcal{P}(\mathcal{K})}$.

Note that $\emptyset \in \mathcal{P}(\mathcal{K})$ and that $\mathcal{P}(\mathcal{K})$ is union closed, by the definition of potential implicate sets. Thus, for any subset $S \subseteq V$ we have a unique maximal potential implicate set in S.

Lemma

For a Sperner hypergraph $\mathcal{K} \subseteq 2^V$ and subset $S \subseteq V$ the unique maximal potential implicate set within S can be computed in $O(|S| \cdot ||\mathcal{K}||^2)$ time.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Keys of Definite Horn Functions							
Background New Concepts Basic Properties Algorithmic Res 00 0000 0000 000	ults Keys 000						

A Sperner hypergraph $\mathcal{K} \subseteq 2^V$ is realized as the set of minimal keys of a definite Horn function if and only if $\mathcal{K} = \mathcal{K}(\Phi_{\mathcal{P}(\mathcal{K})})$. Furthermore, if $\mathcal{K} = \mathcal{K}(h)$ for a definite Horn function h then we have $h \ge \Phi_{\mathcal{P}(\mathcal{K})}$.

Note that $\emptyset \in \mathcal{P}(\mathcal{K})$ and that $\mathcal{P}(\mathcal{K})$ is union closed, by the definition of potential implicate sets. Thus, for any subset $S \subseteq V$ we have a unique maximal potential implicate set in S.

Lemma

For a Sperner hypergraph $\mathcal{K} \subseteq 2^V$ and subset $S \subseteq V$ the unique maximal potential implicate set within S can be computed in $O(|S| \cdot ||\mathcal{K}||^2)$ time.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Background	New Concepts	Basic Properties	Algorithmic Results	Keys
00	0000	0000	000	00●
Keys of	Definite Ho	orn Functions	Cont'd	

For a Sperner hypergraph $\mathcal{K} \subseteq 2^V$ we can decide in $O(|V|^3 \cdot |\mathcal{K}| \cdot ||\mathcal{K}||^2)$ time if $\mathcal{K} = \mathcal{K}(\Phi_{\mathcal{H}})$ for a hypergraph \mathcal{H} , and if yes, we can construct such a hypergraph with $|\mathcal{H}| \leq |V| \cdot |\mathcal{K}|$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●