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Background New Concepts Basic Properties Algorithmic Results Keys

Boolean functions, clauses, and implicates, ...

Set of Variables: V , |V | = n > 1.

Set of Literals: L = {v, v̄ = 1− v | v ∈ V }.
Boolean Functions: f : 2V 7→ {0, 1}.
True Sets: T (f) = {S ⊆ V | f(S) = 1}.
Clauses: A clause is a disjunction of literals:

1̄ ∨ 2 ∨ 3 ∨ 4̄.

CNFs: A CNF is a conjunction of clauses.

Implicates: A clause C is an implicate of a Boolean function f if it
evaluates to true whenever f does:

f ≤ C.
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Definite Horn Functions

Definite (pure) Horn clause: Has exactly one unnegated literal: for
v ∈ V , B ⊆ V (

v ∨
∨
u∈B

ū

)
⇐⇒ B → v

Definite Horn Function h: Can be represented by a CNF in which
every clause is definite Horn ⇐⇒ T (h) is closed under
intersections and V ∈ T (h) (Horn, 1951).

Implicates of a definite Horn function h:

h ≤ B
h−→ v

for some B ⊆ V and v ∈ V .
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ū

)
⇐⇒ B → v

Definite Horn Function h: Can be represented by a CNF in which
every clause is definite Horn ⇐⇒ T (h) is closed under
intersections and V ∈ T (h) (Horn, 1951).

Implicates of a definite Horn function h:

h ≤ B
h−→ v

for some B ⊆ V and v ∈ V .



Background New Concepts Basic Properties Algorithmic Results Keys

Implicate Sets

Implicate set: Given a Boolean function f : 2V 7→ {0, 1} a subset
I ⊆ V is an implicate set of f if

I − v
f−→ v ∀v ∈ I.

Equivalence: If I ⊆ V , |I| = 2 is an implicate set, then we have
equivalent variables.

A (healthy) redundancy in databases: ...

Given f : 2V 7→ {0, 1} we denote by I(f) the family of its implicate
sets.

Never empty: ∅ ∈ I(f).
Closed under union: I(f) = I(f)∪.
We call a clause A→ v a circular implicate of f if A + v ∈ I(f).
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Hypergraph Horn Functions

Given a hypergraph H ⊆ 2V we associate to it a definite Horn CNF

ΦH =
∧

H∈H

(∧
v∈H

((H − v)→ v)

)
.

A Boolean function f : 2V 7→ {0, 1} is called hypergraph Horn if there
exists a hypergraph H ⊆ 2V such that

f ∼ ΦH.

=⇒ H ⊆ I(f).
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Implicate Duality

Given a Boolean function f : 2V 7→ {0, 1} we define its implicate dual
f i by

T (f i) = (I(f))
c

= {V \ I | I ∈ I(f)}

Recall that I(f) is union closed and ∅ ∈ I(f). Consequently, I(f)c is
intersection closed and V ∈ I(f)c.

Claim

The implicate dual of an arbitrary Boolean function is definite Horn.
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Some Natural Questions

How can we recognize if a given Horn CNF Ψ represents a
hypergraph Horn function?

Which hypergraphs are families of implicate sets of Horn functions?

Which definite Horn functions are implicate duals of Boolean
functions?

... and more ...
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Some examples

Hypergraph Horn functions may have non-circular implicates: For
instance, if H = {123, 234}, then

12
ΦH→ 4 but 14

ΦH9 2

A hypergraph Horn function may be represented by different hypergraphs:

Φ12,23,34 ∼ Φ13,14,24

The same example also shows taking unions of a representation
does not yield all implicate sets, in general. In particular, not all
union closed families can appear as I(h) of a definite Horn
function h.
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Operators

Assume that h is a definite Horn function represented by a definite
Horn CNF Ψ and S ⊆ V .

We denote by Th(S) = TΨ(S) the unique minimal true set T ∈ T (h)
such that S ⊆ T .

We denote by Ih(S) = IΨ(S) the unique maximal implicate set
I ∈ I(h) such that I ⊆ S.

Th(S) is known as the forward-chaining closure of S. It can be
computed in polynomial time in the size of Ψ.

We call Ih(S) the h-core of S. It can be also computed in
polynomial time in the size of Ψ.
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Duality Between True Sets and Implicate Sets

Theorem

For a hypergraph Horn function h we have that

T (h) = {T ⊆ V | @I ∈ I(h) with |I \ T | = 1} (1)

I(h) = {I ⊆ V | @T ∈ T (h) with |I \ T | = 1} (2)

(2) holds for all Boolean functions.

(1) turns out to be a characterization of hypergraph Horn
functions.
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Characterization of Hypergraph Horn Functions

Theorem

For a definite Horn function h the following claims are equivalent:

(i) h is hypergraph Horn.

(ii) hii = h.

(iii) ∀ F ∈ 2V \ T (h) ∃ I ∈ I(h) such that |I \ F | = 1.

(iv) ∀ F ∈ 2V \ T (h) ∃ u ∈ Th(F ) \ F such that v ∈ Th(F − v + u)
holds for all v ∈ F with h(F − v) = 1.

(ii) shows that implication duality is an involution of the family
of hypergraph Horn functions, and it generalizes matroid duality.

(iii) is a reformulation of (1).

(iv) is a generalization of the Mac Lane - Steinitz exchange
property of matroid closures.
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Implicate Sets

Assume that h is represented by a definite Horn CNF Ψ.

Lemma

Given X,Y ⊆ V we can find I ∈ I(h) such that X ⊆ I, I ∩ Y = ∅, or
prove that no such implicate set of h exists in polynomial time in the
size of Ψ.

Corollary

We can generate I(h) with polynomial delay (in the size of Ψ).

Given H ⊆ 2V , we can decide if H = I(h) for a Horn function h,
in polynomial time in the size of H.
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in polynomial time in the size of H.
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Hypergraph Horn Recognition

Assume that h is represented by a definite Horn CNF Ψ.

Theorem

We can decide in polynomial time in the size of Ψ if h ∼ ΦH for a
hypergraph H ⊆ 2V , and if yes, output such a hypergraph with
|H| ≤ |V | · ‖Ψ‖.

The produced hypergraph may not be Sperner ...

...even if h ∼ ΦS for some Sperner hypergraph S.

Recognizing the existence of a Sperner hypergraph H
with Ψ ∼ ΦH is an open problem.
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Implicate Duality

Theorem

Given definite Horn CNFs Ψ and Γ, we can decide Ψ ≥ Γi in
O(|V |2 · |Ψ| · ‖Γ‖) time.

Deciding Ψ ≤ Γi is an open problem, even if both CNFs
are hypergraph Horn.
Deciding Ψ = Ψi belongs to co-NP.

Theorem

For a definite Horn function h we have h = hi if and only if H = I(h)
is a maximal family with respect to the property of

|H ∩H ′| 6= 1 ∀ H,H ′ ∈ H.

Note that we have H = Hd if and only if H is a maximal
Sperner family with respect to the property of

|H ∩H ′| 6= 0 ∀ H,H ′ ∈ H.
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Keys of Definite Horn Functions

A subset K ⊆ V is a key of a definite Horn function h if Th(K) = V .
We denote by K(h) the family of minimal keys of h. Note that we
have M(h) = K(h)dc, where M(h) denotes the family of maximal
non-trivial true sets of h.

Claim

Given a Sperner hypergraph K ⊆ 2V , we have K = K(h) for a definite
Horn function h if and only if

(i) Kdc ⊆ T (h), and

(ii) K+ \ {V } ⊆ 2V \ T (h).

Let us call a subset I ⊆ V a potential implicate set for K if
Kdc ⊆ T (Φ{I}). We denote by P(K) the family of potential implicate
sets for K.

Claim

If K = K(h) for a definite Horn function h, then I(h) ⊆ P(K).
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Keys of Definite Horn Functions

Theorem

A Sperner hypergraph K ⊆ 2V is realized as the set of minimal keys of
a definite Horn function if and only if K = K(ΦP(K)). Furthermore, if
K = K(h) for a definite Horn function h then we have h ≥ ΦP(K).

Note that ∅ ∈ P(K) and that P(K) is union closed, by the definition
of potential implicate sets. Thus, for any subset S ⊆ V we have a
unique maximal potential implicate set in S.

Lemma

For a Sperner hypergraph K ⊆ 2V and subset S ⊆ V the unique
maximal potential implicate set within S can be computed in
O(|S| · ‖K‖2) time.
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Keys of Definite Horn Functions Cont’d

Theorem

For a Sperner hypergraph K ⊆ 2V we can decide in
O(|V |3 · |K| · ‖K‖2) time if K = K(ΦH) for a hypergraph H, and if yes,
we can construct such a hypergraph with |H| ≤ |V | · |K|.
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