The basic algorithm for pseudo-Boolean programming re-re-visited

Yves Crama
HEC Management School, University of Liège, Belgium

Boolean Seminar Liblice 2023

Outline

(1) Polynomial 0-1 optimization

(2) Variable elimination
(3) Conclusions

Definitions

Pseudo-Boolean functions

A pseudo-Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, that is, a real-valued function of $0-1$ variables.

Definitions

Pseudo-Boolean functions

A pseudo-Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, that is, a real-valued function of $0-1$ variables.

Representation: tabulated form

$\#$	$x_{1}, x_{2}, x_{3}, x_{4}$	$f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
0	$0,0,0,0$	4
1	$0,0,0,1$	4
2	$0,0,1,0$	2
3	$0,0,1,1$	2
\ldots	\ldots	\ldots
14	$0,1,1,1$	3
15	$1,1,1,1$	7

Multilinear representation

Multilinear polynomials

Every pseudo-Boolean function can be represented - in a unique way - as a multilinear polynomial in its variables.

$$
f(x)=\sum_{S \in \mathcal{M}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i}
$$

(Note: $x^{2}=x$.)

Multilinear representation

Multilinear polynomials

Every pseudo-Boolean function can be represented - in a unique way - as a multilinear polynomial in its variables.

$$
f(x)=\sum_{S \in \mathcal{M}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i},
$$

(Note: $x^{2}=x$.)
Multilinear polynomial.
$f=4-9 x_{1}-5 x_{2}-2 x_{3}+13 x_{1} x_{2}+13 x_{1} x_{3}+6 x_{2} x_{3} x_{4}-13 x_{1} x_{2} x_{3} x_{4}$

Multilinear representation

Multilinear polynomials

Every pseudo-Boolean function can be represented - in a unique way - as a multilinear polynomial in its variables.

$$
f(x)=\sum_{S \in \mathcal{M}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i},
$$

(Note: $x^{2}=x$.)
Multilinear polynomial.
$f=4-9 x_{1}-5 x_{2}-2 x_{3}+13 x_{1} x_{2}+13 x_{1} x_{3}+6 x_{2} x_{3} x_{4}-13 x_{1} x_{2} x_{3} x_{4}$

Some advertising...

Connections with Boolean functions:

BOOLEAN FUNCTIONS Theory, Algorithms, and Applications

Yves CRAMA and Peter L. HAMMER Cambridge University Press, 2011 710 pages
with contributions by C. Benzaken, E. Boros, N. Brauner, M.C. Golumbic, V. Gurvich, L. Hellerstein, T. Ibaraki, A. Kogan, K. Makino, B. Simeone

BOOLEAN FUNCTIONS

Theory, Algorithms, and Applications

Yves Crama and Peter L. Hammer

Polynomial unconstrained optimization in binary variables

(PUB) $\min _{x \in\{0,1\}^{n}} f(x)=\sum_{S \in \mathcal{M}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i}$

Polynomial unconstrained optimization in binary variables

$$
\text { (PUB) } \min _{x \in\{0,1\}^{n}} f(x)=\sum_{S \in \mathcal{M}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i}
$$

Complexity

PUB is NP-hard if f is a multilinear polynomial of degree 2 or more.

Polynomial unconstrained optimization in binary variables

$$
\text { (PUB) } \min _{x \in\{0,1\}^{n}} f(x)=\sum_{S \in \mathcal{M}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i}
$$

Complexity

PUB is NP-hard if f is a multilinear polynomial of degree 2 or more.
Numerous applications in various fields, e.g,

- naturally models satisfiability and maximum satisfiability (in particular, Max 2SAT)
- Max Cut, Max Stable Set
- implementation of quantum computing

Polynomial unconstrained optimization in binary variables

(PUB) $\min _{x \in\{0,1\}^{n}} f(x)=\sum_{S \in \mathcal{M}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i}$

Polynomial unconstrained optimization in binary variables

$$
\text { (PUB) } \min _{x \in\{0,1\}^{n}} f(x)=\sum_{S \in \mathcal{M}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i}
$$

Numerous applications in various fields, e.g,

- Telecommunications and statistical mechanics.
- Compute $\{-1,+1\}$ sequences $s=\left(s_{1}, \ldots, s_{n}\right)$ with low auto-correlations.

Polynomial unconstrained optimization in binary variables

$$
\text { (PUB) } \min _{x \in\{0,1\}^{n}} f(x)=\sum_{S \in \mathcal{M}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i}
$$

Numerous applications in various fields, e.g,

- Telecommunications and statistical mechanics.
- Compute $\{-1,+1\}$ sequences $s=\left(s_{1}, \ldots, s_{n}\right)$ with low auto-correlations.
- Given $r \leq n$, find $s \in\{-1,+1\}^{n}$ to minimize

$$
E_{n, r}(s)=\sum_{i=1}^{n-r+1} \sum_{d=1}^{r-1}\left(\sum_{j=i}^{i+r-1-d} s_{j} s_{j+d}\right)^{2} .
$$

- $E_{n, r}$ is a polynomial of degree 4 (easily transformed to 0-1 variables).
- Very hard for MIP solvers as soon as $n, r \geq 40$ (instances on MINLPLib).

Polynomial unconstrained optimization in binary variables

$$
\text { (PUB) } \min _{x \in\{0,1\}^{n}} f(x)=\sum_{S \in \mathcal{M}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i}
$$

- Some classical approaches:
- Linearization.
- Quadratization.
- Variable elimination.

Outline

(1) Polynomial 0-1 optimization

(2) Variable elimination

(3) Conclusions

Basic algorithm

- A dynamic programming algorithm based on variable elimination (Hammer, Rosenberg and Rudeanu 1963)

Hammer, P.L., Rosenberg, I., Rudeanu, S., 1963. On the determination of the minima of pseudo- Boolean functions. Studii si Cercetari Matematice 14, 359-364. In Romanian.

Hammer, P.L., Rudeanu, S., 1968. Boolean Methods in Operations Research and Related Areas. Springer-Verlag, Berlin.

Basic algorithm

- A dynamic programming algorithm based on variable elimination (Hammer, Rosenberg and Rudeanu 1963)
- Re-visited by Crama, Hansen and Jaumard (1990)

Crama, Y., Hansen, P., Jaumard, B., 1990. The basic algorithm for pseudo-Boolean programming revisited. Discrete Applied Mathematics 29, 171-185.

Basic algorithm

- A dynamic programming algorithm based on variable elimination (Hammer, Rosenberg and Rudeanu 1963)
- Re-visited by Crama, Hansen and Jaumard (1990)
- Re-re-visited in 2023!

Clausen, J.V., Crama, Y., Lusby, R., Rodriguez-Heck, E. and Ropke, S. 2023. Solving unconstrained binary polynomial programs with limited reach. Working paper, HEC-ULiege.

Basic algorithm

- Central idea: inspired by classical elimination methods for Boolean equations (Boole 1854).
- The Boolean equation $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ is consistent if and only if the equation

$$
\begin{equation*}
\phi\left(x_{2}, \ldots, x_{n}\right)=\varphi\left(0, x_{2}, \ldots, x_{n}\right) \varphi\left(1, x_{2}, \ldots, x_{n}\right)=0 \tag{1}
\end{equation*}
$$

is consistent.

Basic algorithm

- Central idea: inspired by classical elimination methods for Boolean equations (Boole 1854).
- The Boolean equation $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ is consistent if and only if the equation

$$
\begin{equation*}
\phi\left(x_{2}, \ldots, x_{n}\right)=\varphi\left(0, x_{2}, \ldots, x_{n}\right) \varphi\left(1, x_{2}, \ldots, x_{n}\right)=0 \tag{1}
\end{equation*}
$$

is consistent.

- Repeat until all variables are eliminated.

Basic algorithm

- Central idea: inspired by classical elimination methods for Boolean equations (Boole 1854).
- The Boolean equation $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ is consistent if and only if the equation

$$
\begin{equation*}
\phi\left(x_{2}, \ldots, x_{n}\right)=\varphi\left(0, x_{2}, \ldots, x_{n}\right) \varphi\left(1, x_{2}, \ldots, x_{n}\right)=0 \tag{1}
\end{equation*}
$$

is consistent.

- Repeat until all variables are eliminated.
- Note:

$$
\phi\left(x_{2}, \ldots, x_{n}\right)=\min \left(\varphi\left(0, x_{2}, \ldots, x_{n}\right), \varphi\left(1, x_{2}, \ldots, x_{n}\right)\right) .
$$

Basic algorithm

For pseudo-Boolean optimization:

- Let $f_{1}\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{1}, \ldots, x_{n}\right)$.
- Eliminate x_{1}, that is, produce an expression of the function

$$
f_{2}\left(x_{2}, \ldots, x_{n}\right) \triangleq \min _{x_{1}} f_{1}\left(x_{1}, \ldots, x_{n}\right)=\min \left(f_{1}\left(0, x_{2}, \ldots, x_{n}\right), f_{1}\left(1, x_{2}, \ldots, x_{n}\right)\right) .
$$

Basic algorithm

For pseudo-Boolean optimization:

- Let $f_{1}\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{1}, \ldots, x_{n}\right)$.
- Eliminate x_{1}, that is, produce an expression of the function

$$
f_{2}\left(x_{2}, \ldots, x_{n}\right) \triangleq \min _{x_{1}} f_{1}\left(x_{1}, \ldots, x_{n}\right)=\min \left(f_{1}\left(0, x_{2}, \ldots, x_{n}\right), f_{1}\left(1, x_{2}, \ldots, x_{n}\right)\right) .
$$

- How?

Basic algorithm

For pseudo-Boolean optimization:

- Let $f_{1}\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{1}, \ldots, x_{n}\right)$.
- Eliminate x_{1}, that is, produce an expression of the function

$$
f_{2}\left(x_{2}, \ldots, x_{n}\right) \triangleq \min _{x_{1}} f_{1}\left(x_{1}, \ldots, x_{n}\right)=\min \left(f_{1}\left(0, x_{2}, \ldots, x_{n}\right), f_{1}\left(1, x_{2}, \ldots, x_{n}\right)\right) .
$$

- How? Write $f_{1}\left(x_{1}, \ldots, x_{n}\right)=x_{1} g\left(x_{2}, \ldots, x_{n}\right)+h\left(x_{2}, \ldots, x_{n}\right)$. (Straighforward if f is in polynomial form.)

Basic algorithm

For pseudo-Boolean optimization:

- Let $f_{1}\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{1}, \ldots, x_{n}\right)$.
- Eliminate x_{1}, that is, produce an expression of the function

$$
f_{2}\left(x_{2}, \ldots, x_{n}\right) \triangleq \min _{x_{1}} f_{1}\left(x_{1}, \ldots, x_{n}\right)=\min \left(f_{1}\left(0, x_{2}, \ldots, x_{n}\right), f_{1}\left(1, x_{2}, \ldots, x_{n}\right)\right) .
$$

- How? Write $f_{1}\left(x_{1}, \ldots, x_{n}\right)=x_{1} g\left(x_{2}, \ldots, x_{n}\right)+h\left(x_{2}, \ldots, x_{n}\right)$. (Straighforward if f is in polynomial form.)
- For any $\left(x_{2}, \ldots, x_{n}\right)$,
- $f_{1}\left(0, x_{2}, \ldots, x_{n}\right)=h\left(x_{2}, \ldots, x_{n}\right)$
- $f_{1}\left(1, x_{2}, \ldots, x_{n}\right)=g\left(x_{2}, \ldots, x_{n}\right)+h\left(x_{2}, \ldots, x_{n}\right)$
- So: $f_{2}\left(x_{2}, \ldots, x_{n}\right)=\min \left\{0, g\left(x_{2}, \ldots, x_{n}\right)\right\}+h\left(x_{2}, \ldots, x_{n}\right)$.

Basic algorithm

For pseudo-Boolean optimization:

- Let $f_{1}\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{1}, \ldots, x_{n}\right)$.
- Eliminate x_{1}, that is, produce an expression of the function

$$
f_{2}\left(x_{2}, \ldots, x_{n}\right) \triangleq \min _{x_{1}} f_{1}\left(x_{1}, \ldots, x_{n}\right)=\min \left(f_{1}\left(0, x_{2}, \ldots, x_{n}\right), f_{1}\left(1, x_{2}, \ldots, x_{n}\right)\right) .
$$

- How? Write $f_{1}\left(x_{1}, \ldots, x_{n}\right)=x_{1} g\left(x_{2}, \ldots, x_{n}\right)+h\left(x_{2}, \ldots, x_{n}\right)$. (Straighforward if f is in polynomial form.)
- For any $\left(x_{2}, \ldots, x_{n}\right)$,
- $f_{1}\left(0, x_{2}, \ldots, x_{n}\right)=h\left(x_{2}, \ldots, x_{n}\right)$
- $f_{1}\left(1, x_{2}, \ldots, x_{n}\right)=g\left(x_{2}, \ldots, x_{n}\right)+h\left(x_{2}, \ldots, x_{n}\right)$
- So: $f_{2}\left(x_{2}, \ldots, x_{n}\right)=\min \left\{0, g\left(x_{2}, \ldots, x_{n}\right)\right\}+h\left(x_{2}, \ldots, x_{n}\right)$.
- Repeat until all variables are eliminated.

Basic algorithm

Crucial step:

- $f_{2}\left(x_{2}, \ldots, x_{n}\right)=\min \left\{0, g\left(x_{2}, \ldots, x_{n}\right)\right\}+h\left(x_{2}, \ldots, x_{n}\right)$.
- Compute $\psi=\min \left\{0, g\left(x_{2}, \ldots, x_{n}\right)\right\}$.

Basic algorithm

Crucial step:

- $f_{2}\left(x_{2}, \ldots, x_{n}\right)=\min \left\{0, g\left(x_{2}, \ldots, x_{n}\right)\right\}+h\left(x_{2}, \ldots, x_{n}\right)$.
- Compute $\psi=\min \left\{0, g\left(x_{2}, \ldots, x_{n}\right)\right\}$.
- Previous attempts: obtain a polynomial expression of ψ.

Basic algorithm

Crucial step:

- $f_{2}\left(x_{2}, \ldots, x_{n}\right)=\min \left\{0, g\left(x_{2}, \ldots, x_{n}\right)\right\}+h\left(x_{2}, \ldots, x_{n}\right)$.
- Compute $\psi=\min \left\{0, g\left(x_{2}, \ldots, x_{n}\right)\right\}$.
- Previous attempts: obtain a polynomial expression of ψ.
- Hammer, Rosenberg and Rudeanu (1963) proceed by algebraic manipulations - never implemented.

Basic algorithm

Crucial step:

- $f_{2}\left(x_{2}, \ldots, x_{n}\right)=\min \left\{0, g\left(x_{2}, \ldots, x_{n}\right)\right\}+h\left(x_{2}, \ldots, x_{n}\right)$.
- Compute $\psi=\min \left\{0, g\left(x_{2}, \ldots, x_{n}\right)\right\}$.
- Previous attempts: obtain a polynomial expression of ψ.
- Hammer, Rosenberg and Rudeanu (1963) proceed by algebraic manipulations - never implemented.
- Crama, Hansen and Jaumard (1990) propose a branch-and-bound algorithm to compute ψ.

Basic algorithm

Crucial step:

- $f_{2}\left(x_{2}, \ldots, x_{n}\right)=\min \left\{0, g\left(x_{2}, \ldots, x_{n}\right)\right\}+h\left(x_{2}, \ldots, x_{n}\right)$.
- Compute $\psi=\min \left\{0, g\left(x_{2}, \ldots, x_{n}\right)\right\}$.
- Previous attempts: obtain a polynomial expression of ψ.
- Hammer, Rosenberg and Rudeanu (1963) proceed by algebraic manipulations - never implemented.
- Crama, Hansen and Jaumard (1990) propose a branch-and-bound algorithm to compute ψ.
- Observe: if $g\left(x_{2}, \ldots, x_{n}\right)$ depends on a bounded number of variables (say, w variables), then an expression of ψ can be computed in time $O\left(2^{w}\right)$:

$$
\psi=\sum_{S \subseteq[w]} a_{S} \prod_{i \in S} x_{i}
$$

Basic algorithm

Crucial step:

- $f_{2}\left(x_{2}, \ldots, x_{n}\right)=\min \left\{0, g\left(x_{2}, \ldots, x_{n}\right)\right\}+h\left(x_{2}, \ldots, x_{n}\right)$.
- Compute $\psi=\min \left\{0, g\left(x_{2}, \ldots, x_{n}\right)\right\}$.
- Previous attempts: obtain a polynomial expression of ψ.
- Hammer, Rosenberg and Rudeanu (1963) proceed by algebraic manipulations - never implemented.
- Crama, Hansen and Jaumard (1990) propose a branch-and-bound algorithm to compute ψ.
- Observe: if $g\left(x_{2}, \ldots, x_{n}\right)$ depends on a bounded number of variables (say, w variables), then an expression of ψ can be computed in time $O\left(2^{w}\right)$:

$$
\psi=\sum_{S \subseteq[w]} a_{S} \prod_{i \in S} x_{i}
$$

- This happens at all iterations of the basic algorithm if the co-occurrence graph of f has treewidth at most w.

Co-occurrence graph

Co-occurrence graph of a function $f(x)=\sum_{S \in \mathcal{M}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i}$:

- vertices = variables
- $\left\{x_{i}, x_{j}\right\}$ is an edge if x_{i} and x_{j} appear in a same monomial S.

Example:

$f=4-9 x_{1}-5 x_{2}-2 x_{3}+13 x_{1} x_{2}+13 x_{1} x_{3}+6 x_{2} x_{3} x_{4}$.
Edges: $\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{3}\right\},\left\{x_{2}, x_{4}\right\},\left\{x_{3}, x_{4}\right\}$.

Basic algorithm with bounded treewidth

Treewidth w

There is an elimination ordering x_{1}, \ldots, x_{n} of vertices such that, if we perform the following operations for $i=1, \ldots, n$,

- replace the neighborhood of vertex x_{i} by a clique and remove x_{i} from the graph,
then x_{i} has at most w neighbors at each iteration.

Basic algorithm with bounded treewidth

Treewidth w

There is an elimination ordering x_{1}, \ldots, x_{n} of vertices such that, if we perform the following operations for $i=1, \ldots, n$,

- replace the neighborhood of vertex x_{i} by a clique and remove x_{i} from the graph, then x_{i} has at most w neighbors at each iteration.

Crama, Hansen and Jaumard (1990)

When the co-occurrence graph of f has bounded treewidth w, the basic algorithm can be implemented to run in time $O\left(n 2^{w}\right)$.

Low-autocorrelation sequence instances

- Co-occurrence graph for low-autocorrelation sequence instances:
$\min E_{n, r}(s)=\sum_{i=1}^{n-r+1} \sum_{d=1}^{r-1}\left(\sum_{j=i}^{i+r-1-d} s_{j} s_{j+d}\right)^{2}$ with $n=20, r=5$.

Low-autocorrelation sequence instances

- Co-occurrence graph for low-autocorrelation sequence instances:
$\min E_{n, r}(s)=\sum_{i=1}^{n-r+1} \sum_{d=1}^{r-1}\left(\sum_{j=i}^{i+r-1-d} s_{j} s_{j+d}\right)^{2}$ with $n=20, r=5$.

Basic algorithm with bounded treewidth

- Low-autocorrelation sequence instance $E_{n, r}$ has treewidth at most r.

Basic algorithm with bounded treewidth

- Low-autocorrelation sequence instance $E_{n, r}$ has treewidth at most r.
- Even better, $E_{n, r}$ has bounded reach r : if variables x_{i} and x_{j} appear together in a monomial, then $|i-j| \leq r$.

Basic algorithm with bounded treewidth

- Low-autocorrelation sequence instance $E_{n, r}$ has treewidth at most r.
- Even better, $E_{n, r}$ has bounded reach r : if variables x_{i} and x_{j} appear together in a monomial, then $|i-j| \leq r$.
- If x_{i} has lowest index in a term $\prod_{k \in S} x_{k}$, then $S \subseteq\{i, i+1, \ldots, i+r-1\}$.

Basic algorithm with bounded treewidth

- Low-autocorrelation sequence instance $E_{n, r}$ has treewidth at most r.
- Even better, $E_{n, r}$ has bounded reach r : if variables x_{i} and x_{j} appear together in a monomial, then $|i-j| \leq r$.
- If x_{i} has lowest index in a term $\prod_{k \in S} x_{k}$, then $S \subseteq\{i, i+1, \ldots, i+r-1\}$.
- Note: reach $r \Rightarrow$ treewidth $\leq r-1$.

Basic algorithm with bounded treewidth

- Low-autocorrelation sequence instance $E_{n, r}$ has treewidth at most r.
- Even better, $E_{n, r}$ has bounded reach r : if variables x_{i} and x_{j} appear together in a monomial, then $|i-j| \leq r$.
- If x_{i} has lowest index in a term $\prod_{k \in S} x_{k}$, then $S \subseteq\{i, i+1, \ldots, i+r-1\}$.
- Note: reach $r \Rightarrow$ treewidth $\leq r-1$.
- Allows a different implementation of the basic algorithm (Clausen et al. 2023).

Basic algorithm with bounded reach

- After elimination of x_{1}, \ldots, x_{t-1}, let

$$
f_{t}\left(x_{t}, \ldots, x_{n}\right)=\min _{x_{1}, \ldots, x_{t-1}} f_{1}\left(x_{1}, \ldots, x_{n}\right) .
$$

Basic algorithm with bounded reach

- After elimination of x_{1}, \ldots, x_{t-1}, let

$$
f_{t}\left(x_{t}, \ldots, x_{n}\right)=\min _{x_{1}, \ldots, x_{t-1}} f_{1}\left(x_{1}, \ldots, x_{n}\right) .
$$

- Maintain f_{t} as

$$
f_{t}\left(x_{t}, \ldots, x_{n}\right)=C_{t}\left(x_{t}, \ldots, x_{t+r-1}\right)+L_{t}\left(x_{t+1}, \ldots, x_{n}\right)
$$

where

$$
L_{t}\left(x_{t+1}, \ldots, x_{n}\right)=s c_{t+1}\left(x_{t+1}, \ldots, x_{t+r}\right)+L_{t+1}\left(x_{t+2}, \ldots, x_{n}\right),
$$

L_{t} consists of terms of f and $s c_{t+1}$ contains the terms of f having x_{t+1} as first variable.

Basic algorithm with bounded reach

- After elimination of x_{1}, \ldots, x_{t-1}, let

$$
f_{t}\left(x_{t}, \ldots, x_{n}\right)=\min _{x_{1}, \ldots, x_{t-1}} f_{1}\left(x_{1}, \ldots, x_{n}\right) .
$$

- Maintain f_{t} as

$$
f_{t}\left(x_{t}, \ldots, x_{n}\right)=C_{t}\left(x_{t}, \ldots, x_{t+r-1}\right)+L_{t}\left(x_{t+1}, \ldots, x_{n}\right)
$$

where

$$
L_{t}\left(x_{t+1}, \ldots, x_{n}\right)=s c_{t+1}\left(x_{t+1}, \ldots, x_{t+r}\right)+L_{t+1}\left(x_{t+2}, \ldots, x_{n}\right),
$$

L_{t} consists of terms of f and $s c_{t+1}$ contains the terms of f having x_{t+1} as first variable.

- Initially,

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=x_{1} g\left(x_{2}, \ldots, x_{n}\right)+h\left(x_{2}, \ldots, x_{n}\right)
$$

with $C_{1}\left(x_{1}, \ldots, x_{r}\right)=x_{1} g\left(x_{2}, \ldots, x_{n}\right)$.

Basic algorithm with bounded reach

- Maintain f_{t} as
$f_{t}\left(x_{t}, \ldots, x_{n}\right)=C_{t}\left(x_{t}, \ldots, x_{t+r-1}\right)+s c_{t+1}\left(x_{t+1}, \ldots, x_{t+r}\right)+L_{t+1}\left(x_{t+2}, \ldots, x_{n}\right)$,
where L_{t} consists of terms of f and $s c_{t+1}$ contains the terms of f having x_{t+1} as first variable.

Basic algorithm with bounded reach

- Maintain f_{t} as

$$
f_{t}\left(x_{t}, \ldots, x_{n}\right)=C_{t}\left(x_{t}, \ldots, x_{t+r-1}\right)+s c_{t+1}\left(x_{t+1}, \ldots, x_{t+r}\right)+L_{t+1}\left(x_{t+2}, \ldots, x_{n}\right),
$$

where L_{t} consists of terms of f and $s c_{t+1}$ contains the terms of f having x_{t+1} as first variable.

- Then

$$
\begin{aligned}
& f_{t+1}\left(x_{t+1}, \ldots, x_{n}\right) \\
& =\min _{x_{t}}\left\{C_{t}\left(x_{t}, \ldots, x_{t+r-1}\right)+s C_{t+1}\left(x_{t+1}, \ldots, x_{t+r}\right)\right\}+L_{t+1}\left(x_{t+2}, \ldots, x_{n}\right) \\
& =C_{t+1}\left(x_{t+1}, \ldots, x_{t+r}\right)+L_{t+1}\left(x_{t+2}, \ldots, x_{n}\right)
\end{aligned}
$$

Basic algorithm with bounded reach

- Maintain f_{t} as

$$
f_{t}\left(x_{t}, \ldots, x_{n}\right)=C_{t}\left(x_{t}, \ldots, x_{t+r-1}\right)+s c_{t+1}\left(x_{t+1}, \ldots, x_{t+r}\right)+L_{t+1}\left(x_{t+2}, \ldots, x_{n}\right),
$$

where L_{t} consists of terms of f and $s c_{t+1}$ contains the terms of f having x_{t+1} as first variable.

- Then

$$
\begin{aligned}
& f_{t+1}\left(x_{t+1}, \ldots, x_{n}\right) \\
& =\min _{x_{t}}\left\{C_{t}\left(x_{t}, \ldots, x_{t+r-1}\right)+s c_{t+1}\left(x_{t+1}, \ldots, x_{t+r}\right)\right\}+L_{t+1}\left(x_{t+2}, \ldots, x_{n}\right) \\
& =C_{t+1}\left(x_{t+1}, \ldots, x_{t+r}\right)+L_{t+1}\left(x_{t+2}, \ldots, x_{n}\right)
\end{aligned}
$$

- If the values of C_{t} are tabulated for all $\left(x_{t}, \ldots, x_{t+r-1}\right)$, then the values of C_{t+1} can be easily tabulated for all $\left(x_{t+1}, \ldots, x_{t+r}\right)$.

Basic algorithm with bounded reach

- Maintain f_{t} as

$$
f_{t}\left(x_{t}, \ldots, x_{n}\right)=C_{t}\left(x_{t}, \ldots, x_{t+r-1}\right)+s c_{t+1}\left(x_{t+1}, \ldots, x_{t+r}\right)+L_{t+1}\left(x_{t+2}, \ldots, x_{n}\right),
$$

where L_{t} consists of terms of f and $s c_{t+1}$ contains the terms of f having x_{t+1} as first variable.

- Then

$$
\begin{aligned}
& f_{t+1}\left(x_{t+1}, \ldots, x_{n}\right) \\
& =\min _{x_{t}}\left\{C_{t}\left(x_{t}, \ldots, x_{t+r-1}\right)+s C_{t+1}\left(x_{t+1}, \ldots, x_{t+r}\right)\right\}+L_{t+1}\left(x_{t+2}, \ldots, x_{n}\right) \\
& =C_{t+1}\left(x_{t+1}, \ldots, x_{t+r}\right)+L_{t+1}\left(x_{t+2}, \ldots, x_{n}\right)
\end{aligned}
$$

- If the values of C_{t} are tabulated for all $\left(x_{t}, \ldots, x_{t+r-1}\right)$, then the values of C_{t+1} can be easily tabulated for all $\left(x_{t+1}, \ldots, x_{t+r}\right)$.
- Each table has size 2^{r}.

Properties of New BA

- This New BA is polynomial $O\left(n 2^{r}\right)$ for instances with reach r (Clausen et al. 2023).

Properties of New BA

- This New BA is polynomial $O\left(n 2^{r}\right)$ for instances with reach r (Clausen et al. 2023).
- New BA avoids the computation of polynomial expressions.

Properties of New BA

- This New BA is polynomial $O\left(n 2^{r}\right)$ for instances with reach r (Clausen et al. 2023).
- New BA avoids the computation of polynomial expressions.
- Each iteration step of New BA can be parallelized.

Computational results for New BA

Given $r \leq n$, find s to minimize

$$
E_{n, r}(s)=\sum_{i=1}^{n-r+1} \sum_{d=1}^{r-1}\left(\sum_{j=i}^{i+r-1-d} s_{j} s_{j+d}\right)^{2}
$$

Computational results for New BA

Given $r \leq n$, find s to minimize

$$
E_{n, r}(s)=\sum_{i=1}^{n-r+1} \sum_{d=1}^{r-1}\left(\sum_{j=i}^{i+r-1-d} s_{j} s_{j+d}\right)^{2}
$$

Results with New BA:

- For the low-autocorrelation binary sequence problem, the New BA performs much better than linearization, quadratization, or previous versions of the basic algorithm (Old BA).

Computational results for New BA

Given $r \leq n$, find s to minimize

$$
E_{n, r}(s)=\sum_{i=1}^{n-r+1} \sum_{d=1}^{r-1}\left(\sum_{j=i}^{i+r-1-d} s_{j} s_{j+d}\right)^{2}
$$

Results with New BA:

- For the low-autocorrelation binary sequence problem, the New BA performs much better than linearization, quadratization, or previous versions of the basic algorithm (Old BA).
- 10 instances are solved to optimality for the first time. For example:
- Instance 40.20: cannot be solved in 3 hours by linearization (gap > 100\%) nor by PQCR (gap $=4 \%$); solved in 450 sec by Old BA, in 9 sec by New BA.
- Instance 50.25: cannot be solved in 3 hours by linearization (gap > 100\%) nor by PQCR (gap = 11\%) nor by Old BA (runs out of memory); solved in 468 sec by New BA.
- BA struggles when r gets large; largest instances solved: 55.28 and 60.15.

Outline

(9) Polynomial 0-1 optimization

(2) Variable elimination
(3) Conclusions

Conclusions

- Polynomial unconstrained binary optimization problems are very hard nuts!

Conclusions

- Polynomial unconstrained binary optimization problems are very hard nuts!
- Old ideas are still fruitful: linearization (1959), quadratization (1975), variable elimination (1963).

Conclusions

- Polynomial unconstrained binary optimization problems are very hard nuts!
- Old ideas are still fruitful: linearization (1959), quadratization (1975), variable elimination (1963).
- Algorithms must be tailored carefully, must often be specifically adapted for the problem at hand.

Conclusions

- Polynomial unconstrained binary optimization problems are very hard nuts!
- Old ideas are still fruitful: linearization (1959), quadratization (1975), variable elimination (1963).
- Algorithms must be tailored carefully, must often be specifically adapted for the problem at hand.
- Still a lot of work to do, both theoretical and computational.

Bibliography

- Hammer, P.L., Rosenberg, I., Rudeanu, S., 1963b. On the determination of the minima of pseudo- Boolean functions. Studii si Cercetari Matematice 14, 359-364. In Romanian.
- Hammer, P.L., Rudeanu, S., 1968. Boolean Methods in Operations Research and Related Areas. Springer-Verlag, Berlin.
- Crama, Y., Hansen, P., Jaumard, B., 1990. The basic algorithm for pseudo-Boolean programming revisited. Discrete Applied Mathematics 29, 171-185.
- Clausen, J.V., Crama, Y., Lusby, R., Rodriguez-Heck, E. and Ropke, S. Solving unconstrained binary polynomial programs with limited reach. Working paper, HEC-ULiege, 2023.

