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Polynomial 0-1 optimization

Definitions

Pseudo-Boolean functions

A pseudo-Boolean function is a mapping f : {0,1}n → R, that is, a real-valued
function of 0− 1 variables.

Representation: tabulated form

# x1, x2, x3, x4 f (x1, x2, x3, x4)
0 0,0,0,0 4
1 0,0,0,1 4
2 0,0,1,0 2
3 0,0,1,1 2
... ... ...
14 0,1,1,1 3
15 1,1,1,1 7
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Polynomial 0-1 optimization

Multilinear representation

Multilinear polynomials

Every pseudo-Boolean function can be represented – in a unique way – as a
multilinear polynomial in its variables.

f (x) =
∑

S∈M

aS

∏
k∈S

xk +
n∑

i=1

aixi ,

(Note: x2 = x .)

Multilinear polynomial.

f = 4− 9x1 − 5x2 − 2x3 + 13x1x2 + 13x1x3 + 6x2x3x4 − 13x1x2x3x4
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Polynomial 0-1 optimization

Some advertising...

Connections with Boolean functions:

BOOLEAN FUNCTIONS
Theory, Algorithms, and Applications

Yves CRAMA and Peter L. HAMMER
Cambridge University Press, 2011
710 pages

with contributions by C. Benzaken, E. Boros,
N. Brauner, M.C. Golumbic, V. Gurvich,
L. Hellerstein, T. Ibaraki, A. Kogan, K. Makino,
B. Simeone
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Polynomial 0-1 optimization

Polynomial unconstrained optimization in binary
variables

(PUB) min
x∈{0,1}n

f (x) =
∑

S∈M

aS

∏
k∈S

xk +
n∑

i=1

aixi

Complexity

PUB is NP-hard if f is a multilinear polynomial of degree 2 or more.

Numerous applications in various fields, e.g,
naturally models satisfiability and maximum satisfiability (in particular,
MAX 2SAT)
MAX CUT, MAX STABLE SET

implementation of quantum computing
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Polynomial 0-1 optimization

Polynomial unconstrained optimization in binary
variables

(PUB) min
x∈{0,1}n

f (x) =
∑

S∈M

aS

∏
k∈S

xk +
n∑

i=1

aixi

Numerous applications in various fields, e.g,
Telecommunications and statistical mechanics.
Compute {−1,+1} sequences s = (s1, . . . , sn) with low auto-correlations.
Given r ≤ n, find s ∈ {−1,+1}n to minimize

En,r (s) =
n−r+1∑

i=1

r−1∑
d=1

i+r−1−d∑
j=i

sjsj+d

2

.

En,r is a polynomial of degree 4 (easily transformed to 0-1 variables).
Very hard for MIP solvers as soon as n, r ≥ 40 (instances on MINLPLib).
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Polynomial 0-1 optimization

Polynomial unconstrained optimization in binary
variables

(PUB) min
x∈{0,1}n

f (x) =
∑

S∈M

aS

∏
k∈S

xk +
n∑

i=1

aixi

Some classical approaches:
Linearization.
Quadratization.
Variable elimination.
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Variable elimination

Outline
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Variable elimination

Basic algorithm

A dynamic programming algorithm based on variable elimination
(Hammer, Rosenberg and Rudeanu 1963)

Hammer, P.L., Rosenberg, I., Rudeanu, S., 1963. On the determination of the
minima of pseudo- Boolean functions. Studii si Cercetari Matematice 14,
359-364. In Romanian.

Hammer, P.L., Rudeanu, S., 1968. Boolean Methods in Operations Research
and Related Areas. Springer-Verlag, Berlin.
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Variable elimination

Basic algorithm

A dynamic programming algorithm based on variable elimination
(Hammer, Rosenberg and Rudeanu 1963)
Re-visited by Crama, Hansen and Jaumard (1990)

Crama, Y., Hansen, P., Jaumard, B., 1990. The basic algorithm for
pseudo-Boolean programming revisited. Discrete Applied Mathematics 29,
171-185.
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Variable elimination

Basic algorithm

A dynamic programming algorithm based on variable elimination
(Hammer, Rosenberg and Rudeanu 1963)
Re-visited by Crama, Hansen and Jaumard (1990)
Re-re-visited in 2023!

Clausen, J.V., Crama, Y., Lusby, R., Rodriguez-Heck, E. and Ropke, S. 2023.
Solving unconstrained binary polynomial programs with limited reach.
Working paper, HEC-ULiege.
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Variable elimination

Basic algorithm

Central idea: inspired by classical elimination methods for Boolean
equations (Boole 1854).
The Boolean equation ϕ(x1, x2, . . . , xn) = 0 is consistent if and only if the
equation

φ(x2, . . . , xn) = ϕ(0, x2, . . . , xn)ϕ(1, x2, . . . , xn) = 0 (1)

is consistent.

Repeat until all variables are eliminated.
Note:

φ(x2, . . . , xn) = min(ϕ(0, x2, . . . , xn), ϕ(1, x2, . . . , xn)).
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Variable elimination

Basic algorithm

For pseudo-Boolean optimization:
Let f1(x1, . . . , xn) := f (x1, . . . , xn).
Eliminate x1, that is, produce an expression of the function

f2(x2, . . . , xn) , min
x1

f1(x1, . . . , xn) = min(f1(0, x2, . . . , xn), f1(1, x2, . . . , xn)).

How? Write f1(x1, . . . , xn) = x1g(x2, . . . , xn) + h(x2, . . . , xn).
(Straighforward if f is in polynomial form.)
For any (x2, . . . , xn),

f1(0, x2, . . . , xn) = h(x2, . . . , xn)
f1(1, x2, . . . , xn) = g(x2, . . . , xn) + h(x2, . . . , xn)

So: f2(x2, . . . , xn) = min{0,g(x2, . . . , xn)}+ h(x2, . . . , xn).

Repeat until all variables are eliminated.
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Variable elimination

Basic algorithm

Crucial step:
f2(x2, . . . , xn) = min{0,g(x2, . . . , xn)}+ h(x2, . . . , xn).

Compute ψ = min{0,g(x2, . . . , xn)}.

Previous attempts: obtain a polynomial expression of ψ.
Hammer, Rosenberg and Rudeanu (1963) proceed by algebraic
manipulations - never implemented.
Crama, Hansen and Jaumard (1990) propose a branch-and-bound
algorithm to compute ψ.
Observe: if g(x2, . . . , xn) depends on a bounded number of variables (say,
w variables), then an expression of ψ can be computed in time O(2w ):

ψ =
∑

S⊆[w ] aS
∏

i∈S xi .

This happens at all iterations of the basic algorithm if the co-occurrence
graph of f has treewidth at most w .
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Variable elimination

Co-occurrence graph

Co-occurrence graph of a function f (x) =
∑

S∈M aS
∏

k∈S xk +
∑n

i=1 aixi :

vertices = variables
{xi , xj} is an edge if xi and xj appear in a same monomial S.

Example:

f = 4− 9x1 − 5x2 − 2x3 + 13x1x2 + 13x1x3 + 6x2x3x4.
Edges: {x1, x2}, {x1, x3},{x2, x3}, {x2, x4}, {x3, x4}.
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Variable elimination

Basic algorithm with bounded treewidth

Treewidth w
There is an elimination ordering x1, . . . , xn of vertices such that, if we perform
the following operations for i = 1, . . . ,n,

replace the neighborhood of vertex xi by a clique and remove xi from the
graph,

then xi has at most w neighbors at each iteration.

Crama, Hansen and Jaumard (1990)

When the co-occurrence graph of f has bounded treewidth w , the basic
algorithm can be implemented to run in time O(n2w ).
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Variable elimination

Low-autocorrelation sequence instances

Co-occurrence graph for low-autocorrelation sequence instances:

minEn,r (s) =
∑n−r+1

i=1
∑r−1

d=1

(∑i+r−1−d
j=i sjsj+d

)2

with n = 20, r = 5.
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Variable elimination

Basic algorithm with bounded treewidth

Low-autocorrelation sequence instance En,r has treewidth at most r .

Even better, En,r has bounded reach r : if variables xi and xj appear
together in a monomial, then |i − j | ≤ r .
If xi has lowest index in a term

∏
k∈S xk , then S ⊆ {i , i + 1, . . . , i + r − 1}.

Note: reach r ⇒ treewidth ≤ r − 1.
Allows a different implementation of the basic algorithm (Clausen et al.
2023).
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Variable elimination

Basic algorithm with bounded reach

After elimination of x1, . . . , xt−1, let

ft(xt , . . . , xn) = min
x1,...,xt−1

f1(x1, . . . , xn).

Maintain ft as

ft(xt , . . . , xn) = Ct(xt , . . . , xt+r−1) + Lt(xt+1, . . . , xn)

where

Lt(xt+1, . . . , xn) = sct+1(xt+1, . . . , xt+r ) + Lt+1(xt+2, . . . , xn),

Lt consists of terms of f and sct+1 contains the terms of f having xt+1 as
first variable.
Initially,

f1(x1, . . . , xn) = x1g(x2, . . . , xn) + h(x2, . . . , xn)

with C1(x1, . . . , xr ) = x1g(x2, . . . , xn).
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= Ct+1(xt+1, . . . , xt+r ) + Lt+1(xt+2, . . . , xn).

If the values of Ct are tabulated for all (xt , . . . , xt+r−1), then the values of
Ct+1 can be easily tabulated for all (xt+1, . . . , xt+r ).
Each table has size 2r .
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Variable elimination

Properties of New BA

This New BA is polynomial O(n2r ) for instances with reach r (Clausen et
al. 2023).

New BA avoids the computation of polynomial expressions.
Each iteration step of New BA can be parallelized.
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Variable elimination

Computational results for New BA

Given r ≤ n, find s to minimize

En,r (s) =
n−r+1∑

i=1

r−1∑
d=1

i+r−1−d∑
j=i

sjsj+d

2

.

Results with New BA:
For the low-autocorrelation binary sequence problem, the New BA
performs much better than linearization, quadratization, or previous
versions of the basic algorithm (Old BA).
10 instances are solved to optimality for the first time. For example:

Instance 40.20: cannot be solved in 3 hours by linearization (gap > 100%)
nor by PQCR (gap = 4%); solved in 450 sec by Old BA, in 9 sec by New BA.
Instance 50.25: cannot be solved in 3 hours by linearization (gap > 100%)
nor by PQCR (gap = 11%) nor by Old BA (runs out of memory); solved in
468 sec by New BA.
BA struggles when r gets large; largest instances solved: 55.28 and 60.15.
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Conclusions

Conclusions

Polynomial unconstrained binary optimization problems are very hard
nuts!

Old ideas are still fruitful: linearization (1959), quadratization (1975),
variable elimination (1963).
Algorithms must be tailored carefully, must often be specifically adapted
for the problem at hand.
Still a lot of work to do, both theoretical and computational.
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