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Knowledge representation languages
There are many ways in which Boolean function can be represented:

Lists of vectors (truth table, set of true vectors (models))
Boolean formulas (general formula, CNF, DNF)
Decision diagrams (BDD, FBDD, OBDD)
Negation normal forms (NNF, DNNF, d-NNF)

Knowledge representation preprocessing
1) preprocess input - done offline and only once, so it is OK if this
step is (very) time consuming
2) use the result to answer queries (preferably by running a dedicated
poly-time algorithm) - done online or repeatedly, should be efficient
There are two main types of such preprocessing:

- Knowledge Compression

- Knowledge Compilation
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Knowledge Compression = Boolean Minimization
Input: representation F of Boolean function f in language L
Output: representation G of f also in L but smaller than F
Examples:
- given circuit F design a logically equivalent circuit G with fewer gates
- given CNF F construct a logically equivalent CNF G with fewer clauses

Knowledge Compilation
Input: representation F of a Boolean function f in language L
Output: representation G of f in some language L’ which is better
suited for the intended use (expected queries)
Examples:
- given CNF F construct a logically equivalent OBDD G
- given NNF F construct a logically equivalent DNF G
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CNF minimization - decision problem
Input: CNF F and k ∈ N
Question: ∃ CNF G : |G| ≤ k and G ≡ F
How to measure CNF size: # of clauses (C) or total # of literals (L)

Tractable classes of CNFs
Class of CNFs is tractable if

SAT is poly-time solvable in the class
the class is closed under conditioning

Equivalence can be tested in poly-time for tractable classes, so for these
classes

SAT is in P = Σp
0

minimization is in NP = Σp
1 and frequently it is also NP-hard

For many tractable classes (e.g. Horn CNFs) the gap between the
complexity of SAT and BM is one level in the polynomial hierarchy.
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General CNFs
Equivalence testing is co-NP-hard and CNF minimization is clearly in Σp

2
(∃G : |G| ≤ k and ∀x : G(x) = F (x)). In fact

SAT is NP − complete = Σp
1 − complete

minimization is in Σp
2 − complete [Umans 2001] both for (C) and

(L) measures
For general CNFs the gap between the complexity of SAT and BM is also
one level in the polynomial hierarchy.

Some outliers
For the class of matched CNFs

SAT is in P (in fact trivial)
minimization is in Σp

2 − complete [Čepek, Gurský, Kučera 2014]
The complexity gap for matched CNFs is two levels in the polynomial
hierarchy.

Ondřej Čepek Boolean Minimization



Knowledge representation languages CNF minimization Horn minimization Hypergraph minimization

CNF minimization - optimization problem
Input: CNF F of a Boolean function f
Output: CNF G of f which is smaller than F
The decision problem is intractable ⇒ look for approximation algorithms
or heuristics. In the latter case, nontrivial lower bounds for the size of
CNFs of the given function are needed to judge the quality of output.

Inapproximability results

BM is inapproximable within a factor of 2log1−ε(n) under a standard
complexity-theoretic assumption
[Bhattacharya, DasGupta, Mubayi, Turán 2010]
BM is inapproximable within a factor of 2O(log1−o(1)n) if P 6= NP
[Boros and Gruber 2012]
both results hold already for a subclass of Horn CNFs
when approximation algorithms provably fail, heuristics is all that
remains (and lower bounds are needed)
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Heuristic minimization
A minimization algorithm based on heuristic decomposition technique
[Boros, Čepek, Kučera 2013] is based on exclusive sets of implicates
introduced in [Boros, Čepek, Kogan, Kučera 2010]

Exclusive sets of implicates
Let f be a Boolean function and X a set of implicates of f . Then X is an
exclusive set of implicates if for every pair of resolvable implicates C ,D

Resolvent(C ,D) ∈ X ⇒ (C ∈ X and D ∈ X)

Both an intersection and a union of exclusive sets is again an
exclusive set.
If F ≡ G are two CNFs representing f and X is an exclusive set of
implicates of f then (F ∩ X) ≡ (G ∩ X) and the corresponding
subfunction is called an X -component of f .
Exclusive components can be minimized independently of the rest of
the input CNF which justifies a decomposition approach.
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Essential prime implicates
A prime implicate of f is essential if it appears in every prime CNF of f .
Trivial lower bound on the (C) measure: # of essential prime implicates.
This concept was generalized in [Boros, Čepek, Kogan, Kučera 2010]

Essential sets of implicates
Let f be a Boolean function and X a set of implicates of f . Then X is an
essential set of implicates if for every pair of resolvable implicates C ,D

Resolvent(C ,D) ∈ X ⇒ (C ∈ X or D ∈ X)

F is a CNF of f ⇔ (F ∩ X) 6= ∅ for every nonempty essential set X .
Pairwise disjoint essential sets ⇒ lower bound on the (C) measure
ess(f ) = max number of pairwise disjoint essential sets of f
cnf (f ) = min number of clauses in a CNF representation of f
Weak duality lower bound: ess(f ) ≤ cnf (f )
This bound is not tight [Čepek, Kučera, Savický 2012]
and in fact the gap can be very large [Hellerstein, Kletenik 2013]
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Coverable classes of CNFs
A class Z of CNFs is called coverable if ess(f ) = cnf (f ) for every
function f representable by a CNF from Z [Čepek, Kučera, Savický 2012]

Strong duality lower bound for coverable classes.
All classes of CNFs for which a polynomial time minimization
algorithm for the (C) measure exists (that I know of) are coverable.

Conjecture
Class Z of CNFs is coverable ⇒ Z admits poly-time exact minimization
for the (C) measure.
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Horn CNF minimization - hardness results for the (C) measure
NP-hard for general Horn CNFs (no degree bound) [Ausiello, D’Atri,
Sacca 1986] unsatisfactory proof
NP-hard for cubic Horn CNFs [Boros, Čepek 1994] proof has an error
NP-hard for cubic Horn CNFs [Boros, Čepek, Kučera 2013]
NP-hard for hydra CNFs (subclass of Horn 3-CNFs) [Kučera 2017]

Horn CNF minimization - hardness results for the (L) measure
NP-hard for general Horn CNFs (no degree bound) [Maier 1980]
reproved later [Ausiello, D’Atri, Sacca 1986] and [Hammer, Kogan
1993]
NP-hard for Horn CNFs of degree 7 [Čepek 1995]
NP-hard for Horn CNFs of degree 5 [Čepek,Kučera 2008]
NP-hard for cubic Horn CNFs [Boros, Čepek, Kučera 2013]
NP-hard for hydra CNFs (subclass of Horn 3-CNFs) [Kučera 2017]
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Horn CNF minimization - classes with poly-time algorithms
acyclic and quasi-acyclic Horn CNFs [Hammer, Kogan 1993]
CQ-Horn CNFs (superclass of the previous two classes)
[Boros, Čepek, Kogan, Kučera 2009]

Horn CNF minimization - poly-time approximation algorithms
O(n)− factor approximation algorithm for Horn CNFs for (C)
[Hammer, Kogan 1993]
O(log(n))-factor approximation algorithms for key Horn CNFs
[Bercsi, Boros, Čepek, Kučera, Makino 2021]
key Horn CNFs are a superclass of hydra CNFs
two different algorithms, one for (C) and one for (L)
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Representations of pure Horn functions
pure Horn CNF

(a ∨ b) ∧ (b ∨ a) ∧ (a ∨ c ∨ d) ∧ (a ∨ c ∨ e)

directed hypergraph

({a}, b), ({b}, a), ({a, c}, d), ({a, c}, e)

implicational (closure) system:

a −→ b, b −→ a, ac −→ d , ac −→ e

Adjacency list representations
directed hypergraph: {a} : b, {b} : a, {a, c} : d , e
implicational (closure) system: a −→ b, b −→ a, ac −→ de
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Measures for the size of adjacency lists
The paper [Ausiello, D’Atri, Sacca 1986] introduced 5 different measures

1 # of source sets (# lists, # of rules)
2 # of hyperarcs (equivalent to (C) for CNFs)
3 # of hyperarcs + # of source sets
4 source area = sum of sizes of source sets
5 source area + # of hyperarcs

All measures except of the first one are NP-hard to minimize.
The number of source sets can be minimized in polynomial time
and this fact was rediscovered many times in different contexts.

Poly-time algorithms minimizing the number of source sets
database context (minimum covers in relational DB) [Maier 1980]
closure systems context [Guigues, Duquenne 1986]
directed hypergraph context [Ausiello, D’Atri, Sacca 1986]
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Common properties of these algorithms
All three algorithms perform the following three steps:

1 Right saturate all rules
2 Left saturate all rules
3 Remove redundant rules

The output is a UNIQUE adjacency list representation (called a GD-base
in closure systems context)

Proofs of correctness
All proofs are very technical, messy, and hard to read, all rely on the
uniqueness of the output.
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Why is # of source sets (bodies) easy to minimize?
bess(f ) = max number of pairwise BODY-disjoint essential sets of f
body(f ) = min number of bodies in a CNF representation of f
Strong duality: bess(f ) = body(f ) holds for all pure Horn functions
[Boros, Čepek, Makino 2017]

Algorithmic consequences of strong duality
Left saturation step can be skipped
Output guaranteed to be minimal
Uniqueness of the output is lost
Asymptotic complexity stays the same
Running time of course decreases
The minimization algorithm is conceptually much simpler
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